20.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)與雙曲線$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦點,則m+n的最大值是( 。
A.3B.6C.18D.36

分析 根據(jù)題意,由橢圓雙曲線的幾何性質(zhì),可得25-m2=7+n2,變形可得:m2+n2=18,進而由基本不等式的性質(zhì)分析可得答案.

解答 解:根據(jù)題意,橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)與雙曲線$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦點,
則有25-m2=7+n2,
變形可得:m2+n2=18,
又由$\frac{{m}^{2}+{n}^{2}}{2}$≥($\frac{m+n}{2}$)2,
則有($\frac{m+n}{2}$)2≤9,
即m+n≤6,
則m+n的最大值是6;
故選:B.

點評 本題考查橢圓、雙曲線的幾何性質(zhì),涉及基本不等式的性質(zhì),關(guān)鍵是得到m2與n2的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-(a+1)lnx-$\frac{a}{x}$,其中a∈R.
(Ⅰ)求證:當(dāng)a=1時,函數(shù)y=f(x)沒有極值點;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在[0,+∞)上的函數(shù)f(x),當(dāng)x∈[0,2]時,f(x)=4(|x-1|-1),且對任意實數(shù) x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且僅有三個實根,則實數(shù)a的取值范圍是( 。
A.[$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{10}$,$\frac{1}{2}$)D.[$\frac{1}{10}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=|lnx|,若f(m)=f(n)(m>n>0),則$\frac{m}{m+1}$+$\frac{n}{n+1}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z=$\frac{(1+i)^{3}}{(1-i)^{2}}$,則$\overline{z}$=(  )
A.1+iB.-1+iC.1-iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.我市某小學(xué)三年級有甲、乙兩個班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取20%的學(xué)生進行某項調(diào)查,則兩個班共抽取男生人數(shù)是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x2-x)ex
(1)求y=f(x)在點(1,f(1))處的切線方程y=g(x),并證明f(x)≥g(x)
(2)若方程f(x)=m(m∈R)有兩個正實數(shù)根x1,x2,求證:|x1-x2|<$\frac{m}{e}$+m+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x)2≤x≤10}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,則$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范圍是( 。
A.(15,25)B.(20,32)C.(8,24)D.(9,21)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出下列命題:
(1)若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
(2)若cosx=-$\frac{2}{3},x∈[{0,π}]$,則x值為:π-arc$cos\frac{2}{3}$.
(3)若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
(4)$\overrightarrow{a}$=$\overrightarrow$⇒|$\overrightarrow{a}$|=|$\overrightarrow$|,$\overrightarrow{a}$∥$\overrightarrow$
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案