11.定義在[0,+∞)上的函數(shù)f(x),當(dāng)x∈[0,2]時(shí),f(x)=4(|x-1|-1),且對(duì)任意實(shí)數(shù) x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且僅有三個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{10}$,$\frac{1}{2}$)D.[$\frac{1}{10}$,$\frac{1}{2}$)

分析 作出y=f(x)和y=logax的函數(shù)圖象,根據(jù)圖象交點(diǎn)個(gè)數(shù)列不等式組,解出a即可.

解答 解:作出y=f(x)的函數(shù)圖象如圖所示:

∵方程f(x)-log a x=0有且僅有三個(gè)實(shí)根,
∴y=f(x)與y=logax的函數(shù)圖象有三個(gè)交點(diǎn),
當(dāng)a>1時(shí),顯然兩圖象只有1個(gè)交點(diǎn),不符合題意;
當(dāng)0<a<1時(shí),若兩圖象有3個(gè)交點(diǎn),
則$\left\{\begin{array}{l}{lo{g}_{a}4>-2}\\{lo{g}_{a}10<-1}\end{array}\right.$,解得$\frac{1}{10}$<a<$\frac{1}{2}$.
故選C.

點(diǎn)評(píng) 本題考查了方程解的個(gè)數(shù)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,將正六邊形ABCDEF中的一半圖形ABCD繞AD翻折到AB1C1D,使得∠B1AF=60°.G是BF與AD的交點(diǎn).
(Ⅰ)求證:平面ADEF⊥平面B1FG;
(Ⅱ)求直線AB1與平面ADEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列式子:
13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述規(guī)律,則83=57+59+61+63+65+67+69+71.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=xn+3x+2x在點(diǎn)M(1,6)處切線的斜率為3+3ln3,則n的值是( 。
A.1B.2C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.己知x、y∈R,i是虛數(shù)單位,若x+yi與$\frac{2+i}{1+i}$互為共軛復(fù)數(shù),則x+y=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,己知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(I )求曲線C1的普通方程;
(II)極坐標(biāo)方程為2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$的直線l與C1交P,Q兩點(diǎn),求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,如果輸人的x=-10.則輸出的y=( 。
A.0B.1C.8D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)與雙曲線$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦點(diǎn),則m+n的最大值是( 。
A.3B.6C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$),x∈R.
(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若x=x0(x0∈[0,$\frac{π}{2}$])為f(x)的一個(gè)零點(diǎn),求sin2x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案