3.已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當(dāng)x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x-2)≤3.

分析 (1)設(shè)0<x1<x2⇒$\frac{{x}_{2}}{{x}_{1}}$>1,依題意,利用單調(diào)性的定義可證得,函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增;
(2)f(x)+f(x-2)≤3?f(x)+f(x-2)≤f(8)?$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x(x-2)≤8}\end{array}\right.$,解之即可.

解答 解:(1)函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增.
證明如下:
設(shè)0<x1<x2,則$\frac{{x}_{2}}{{x}_{1}}$>1,
∵當(dāng)x>1時,f(x)>0恒成立,f(x)+f($\frac{1}{x}$)=0,
∴f(x2)-f(x1)=f(x2)+f($\frac{1}{{x}_{1}}$)=f($\frac{{x}_{2}}{{x}_{1}}$)>0,
∴f(x1)<f(x2),
∴函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增;
(2)∵f(x)+f(x-2)≤3=f(8),且函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增,
∴$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x(x-2)≤8}\end{array}\right.$,解得:2<x≤4,
∴不等式f(x)+f(x-2)≤3的解集為{x|2<x≤4}.

點(diǎn)評 本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法的應(yīng)用及函數(shù)的單調(diào)性,考查方程思想與綜合運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3+mx2+1的導(dǎo)函數(shù)f′(x),且f′(1)=3.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)$\frac{\sqrt{3}}{2}$sin(α+$\frac{π}{6}$)-$\frac{1}{2}$cos(α+$\frac{π}{6}$);
(2)$\frac{\sqrt{2}cosα-2sin(45°-α)}{2sin(60°+α)-\sqrt{3}cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=lnx+ax2-2在區(qū)間$({\frac{1}{2},2})$內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)α的取值范圍是( 。
A.(-∞,-2]B.(-2,+∞)C.(-2,-$\frac{1}{8}$)D.$[-\frac{1}{8},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若圓C:x2+y2=4上的點(diǎn)到直線l:y=x+a的最小距離為2,則a=( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$±2\sqrt{2}$D.$±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正方體ABCD-A1B1C1D1的棱長為1,動點(diǎn)P在正方體ABCD-A1B1C1D1表面上運(yùn)動,且$PA=r({0<r<\sqrt{3}})$.記點(diǎn)P的軌跡的長度為f(r).求關(guān)于r的方程f(r)=k的解的個數(shù)的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,用一平面去截球O,所得截面面積為16π,球心O到截面的距離為3,O1為截面小圓圓心,AB為截面小圓的直徑;
(1)計算球O的表面積和體積;
(2)若C是截面小圓上一點(diǎn),∠ABC=30°,M、N分別是線段AO1和OO1的中點(diǎn),求
異面直線AC與MN所成的角;(結(jié)果用反三角表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)角α是第三象限角,且$|{sin\frac{α}{2}}|=-sin\frac{α}{2}$,則角$\frac{α}{2}$是第四象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示雙曲線,則實數(shù)m的取值范圍是(  )
A.(-1,∞)B.(-2,-1)C.(-∞,-2)∪(-1,+∞)D.(-∞,-2)

查看答案和解析>>

同步練習(xí)冊答案