7.向量$\overrightarrow{a}$=(-1,1),$\overrightarrow$=(1,0),若($\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+λ$\overrightarrow$),則λ=3.

分析 根據(jù)兩向量垂直時數(shù)量積為0,列出方程求出λ的值.

解答 解:向量$\overrightarrow{a}$=(-1,1),$\overrightarrow$=(1,0),
∴${\overrightarrow{a}}^{2}$=2,${\overrightarrow}^{2}$=1,$\overrightarrow{a}$$•\overrightarrow$=-1;
又($\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+λ$\overrightarrow$),
∴($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+λ$\overrightarrow$)=2${\overrightarrow{a}}^{2}$+(λ-2)$\overrightarrow{a}$•$\overrightarrow$-λ${\overrightarrow}^{2}$=0,
即2×2+(λ-2)•(-1)-λ•1=0,
解得λ=3.
故答案為:3.

點評 本題考查了平面向量的坐標運算與數(shù)量積的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三點不能構成三角形,則實數(shù)k應滿足的條件是(  )
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)$f(x)=lnx-\frac{{m({x+n})}}{x+1}$(m>0,n∈R)在(0,+∞)上不單調,若m-n>λ恒成立,則實數(shù)λ的取值范圍為(  )
A.[3,+∞)B.[4,+∞)C.(-∞,3]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合M={x|y=lg(x-2),N={x|x≥a},若集合M∩N=N,則實數(shù)a的取值范圍是( 。
A.(2,+∞)B.[2,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=$\frac{a}{{x}^{2}}$+lnx,g(x)=x3-x2-3.
(1)函數(shù)f(x)在區(qū)間[1,+∞)上是單調函數(shù),求實數(shù)a的取值范圍;
(2)若存在x1,x2∈[-$\frac{1}{3}$,3],使得g(x1)-g(x2)≥M成立,求滿足條件的最大整數(shù)M;
(3)如果對任意的s,t∈[$\frac{1}{3}$,2]都有sf(s)≥g(t)成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn),H分別為A1B1,B1C1,CC1的中點.
(Ⅰ)證明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一點G,使得AG∥平面BEF?若存在,求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.有4個不同的球,4個不同的盒子,把球全部放入盒子內.
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P(3,4)在雙曲線的漸近線上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,則此雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}中,前n項和為Sn,且${S_n}=\frac{n+2}{3}{a_n}$,則$\frac{a_n}{{{a_{n-1}}}}$的最大值為( 。
A.-3B.-1C.3D.1

查看答案和解析>>

同步練習冊答案