(2009•臺(tái)州二模)已知向量
a
=(m,n)
,
b
=(1,-1)
,其中m,n為連續(xù)兩次投擲骰子得到的點(diǎn)數(shù),則
a
b
的夾角能成為直角三角形的內(nèi)角的概率是
7
12
7
12
分析:由已知中m,n為連續(xù)兩次投擲骰子得到的點(diǎn)數(shù),我們可以列舉出(m,n)的所有情況,并列舉出
a
,
b
的夾角能成為直角三角形的內(nèi)角的基本事件個(gè)數(shù),代入古典概型概率計(jì)算公式,即可得到答案.
解答:解:連續(xù)兩次投擲骰子得到的點(diǎn)數(shù)(m,n)共有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36個(gè)
a
,
b
的夾角能成為直角三角形的內(nèi)角,則m≥n
共有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),
(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),
(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),
(6,4),(6,5),(6,6).共21個(gè)
a
,
b
的夾角能成為直角三角形的內(nèi)角的概率P=
21
36
=
7
12

故答案為:
7
12
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是數(shù)量積表示兩個(gè)向量的夾角,等可能事件的概率,在解答時(shí)要注意
a
,
b
的夾角能成為直角三角形的內(nèi)角,是指
a
,
b
的夾角不大于90°,本題易將此點(diǎn)理解為
a
,
b
的夾角為直角,而錯(cuò)解為
1
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)已知兩條不同的直線m,l與三個(gè)不同的平面α,β,γ,滿足l=β∩γ,l∥α,m?α,m⊥γ,那么必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動(dòng)點(diǎn),N,E分別是AM,A1B1的中點(diǎn).
(1)求證:NE∥平面BB1C1C;
(2)當(dāng)M在CC1的什么位置時(shí),B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)一袋子中有大小、質(zhì)量均相同的10個(gè)小球,其中標(biāo)記“開”字的小球有5個(gè),標(biāo)記“心”字的小球有3個(gè),標(biāo)記“樂”字的小球有2個(gè).從中任意摸出1個(gè)球確定標(biāo)記后放回袋中,再從中任取1個(gè)球.不斷重復(fù)以上操作,最多取3次,并規(guī)定若取出“樂”字球,則停止摸球.
求:(Ⅰ)恰好摸到2個(gè)“心”字球的概率;
(Ⅱ)摸球次數(shù)X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)將三個(gè)分別標(biāo)有A,B,C的小球隨機(jī)地放入編號(hào)分別為1,2,3,4的四個(gè)盒子中,則第1號(hào)盒子內(nèi)有球的不同放法的總數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)已知向量
a
,
b
,
c
滿足|
a
|=1
,|
a
-
b
|=|
b
|
,(
a
-
c
)
(
b
-
c
)=0
.若對(duì)每一確定的
b
,|
c
|
的最大值和最小值分別為m,n,則對(duì)任意
b
,m-n的最小值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案