復(fù)數(shù)z和它的共軛復(fù)數(shù)
.
z
在復(fù)平面內(nèi)所對應(yīng)的點關(guān)于( 。⿲ΨQ.
A、原點B、實軸
C、虛軸D、直線x=y
考點:復(fù)數(shù)的基本概念
專題:計算題,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)z=a+bi(a,b∈R),可得z和它的共軛復(fù)數(shù)
.
z
對應(yīng)點的坐標(biāo),由坐標(biāo)可得結(jié)論.
解答: 解:設(shè)z=a+bi(a,b∈R),對應(yīng)的點為(a,b),
則共軛復(fù)數(shù)
.
z
=a-bi,對應(yīng)的點為(a,-b),
它們關(guān)于x軸對應(yīng),
故選B.
點評:該題考查復(fù)數(shù)的共軛復(fù)數(shù)及其幾何意義,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若k是4和9的等比中項,則圓錐曲線x2+
y2
k
=1的離心率是( 。
A、
7
B、
30
6
C、
42
6
5
D、
30
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4(3-π)4
的值( 。
A、0B、3-πC、π-3D、無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4-ax,g(x)=4-logbx,h(x)=4-xe的圖象都經(jīng)過點p(
1
2
,2),若函數(shù)f(x),g(x),h(x)的零點分別為x1,x2,x3,則x1+x2+x3=( 。
A、
7
6
B、
6
5
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項和,且Sn=n2,則{an}是(  )
A、只是等比數(shù)列
B、只是等差數(shù)列
C、既是等比,又是等差數(shù)列
D、既非等比,又非等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:四個角都是直角的四邊形是平面圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-cx(c∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若f(x)≤x2恒成立,求c的取值范圍;
(Ⅲ)設(shè)f(x)有兩個相異零點x1,x2,求證x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差為-2的等差數(shù)列,a6是a1+2與a3的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn=n(n+1),正項數(shù)列{bn}滿足bn+2=
bn+12
bn
,且b1b3=4,b4=8.
(1)求數(shù)列{an},{bn}的通項;
(2)數(shù)列{cn}滿足cn=
S2n
4bn
,若c1c2…cn取得最大值時,求n的值.

查看答案和解析>>

同步練習(xí)冊答案