【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費者,工藝品的平面設(shè)計如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點為半圈上一點(異于,),點在線段上,且滿足.已知,,設(shè).

1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時,工藝禮品達(dá)到最佳觀賞效果;

2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時,取得最大值,并求該最大值.

【答案】12)當(dāng)達(dá)到最大,最大值為

【解析】

1)設(shè),則在直角中,,,計算得到,計算最值得到答案.

2)計算,得到,得的最值.

1)設(shè),則在直角中,.

在直角中,

.

,,

所以當(dāng),即,的最大值為.

2)在直角中,由

可得.

在直角中,,

所以,

所以

,

所以當(dāng),達(dá)到最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·北京卷)如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,PAPDPAPD,ABAD,AB1,AD2,ACCD.

(1)求證:PD⊥平面PAB;

(2)求直線PB與平面PCD所成角的正弦值;

(3)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

)求的取值范圍.

)記兩個極值點, ,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會,每人均獲得砸一顆金蛋的機(jī)會.游戲開始前,甲、乙、丙、丁四位同學(xué)對游戲中獎結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:

甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎,且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎的同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中成等差數(shù)列且

物理成績統(tǒng)計如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學(xué)成績的平均分;

2)若數(shù)學(xué)成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”的同學(xué)總數(shù)為6人,從數(shù)學(xué)成績?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標(biāo)原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于若數(shù)列滿足則稱這個數(shù)列為“數(shù)列”.

(Ⅰ)已知數(shù)列1, 是“數(shù)列”,求實數(shù)的取值范圍;

(Ⅱ)是否存在首項為的等差數(shù)列為“數(shù)列”,且其前項和使得恒成立?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若試判斷數(shù)列是否為“數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,已知平面PAD,,E為棱PC上的一點,經(jīng)過A,BE三點的平面與棱PD相交于點F

求證:平面PAD;

求證:

若平面平面PCD,求證:

查看答案和解析>>

同步練習(xí)冊答案