【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,若對任意的,均有,求的取值范圍.

注:為自然對數(shù)的底數(shù).

【答案】1內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;(2

【解析】

(1)求導(dǎo)后取出極值點(diǎn),再分,兩種情況進(jìn)行討論即可.

(2)當(dāng)時得出的一個取值范圍,再討論時的情況,再對時構(gòu)造函數(shù)兩邊取對數(shù)進(jìn)行分析論證恒成立.

(1)由,解得

①若,則當(dāng)時,,故內(nèi)單調(diào)遞增;

當(dāng)時,,故內(nèi)單調(diào)遞減.

②若,則當(dāng)時,,故內(nèi)單調(diào)遞增;

當(dāng)時,,故內(nèi)單調(diào)遞減.

綜上所述,內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

(2),即

,得,則

當(dāng)時,不等式顯然成立,

當(dāng)時,兩邊取對數(shù),即恒成立.

令函數(shù),即內(nèi)恒成立.

,得

故當(dāng)時,,單調(diào)遞增;

當(dāng)時,,單調(diào)遞減.

因此

令函數(shù),其中,

,得,

故當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.

,,

故當(dāng)時,恒成立,因此恒成立,

即當(dāng)時,對任意的,均有成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是函數(shù)的反函數(shù),解方程;

2)當(dāng)時,定義,設(shè),數(shù)列的前n項(xiàng)和為,求

3)對于任意,其中,當(dāng)能作為一個三角形的三邊長時,也總能作為一個三角形的三邊長,試探究M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線有且只有一個交點(diǎn),點(diǎn)P為橢圓C上任一點(diǎn),,.的最小值為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)直線與橢圓C交于不同兩點(diǎn)A,B,點(diǎn)O為坐標(biāo)原點(diǎn),且,當(dāng)的面積S最大時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計裝機(jī)容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機(jī)容量就突破了,達(dá)到,中國的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計裝機(jī)容量與中國新增裝機(jī)容量圖. 根據(jù)所給信息,正確的統(tǒng)計結(jié)論是(

A.截止到2015年中國累計裝機(jī)容量達(dá)到峰值

B.10年來全球新增裝機(jī)容量連年攀升

C.10年來中國新增裝機(jī)容量平均超過

D.截止到2015年中國累計裝機(jī)容量在全球累計裝機(jī)容量中占比超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時,求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)為橢圓上的三點(diǎn),交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機(jī)構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);

3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機(jī)選取50,記選到女性車主的人數(shù)為X,X的數(shù)學(xué)期望與方差.

參考公式:,,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中.

1)討論函數(shù)的極值;

2)對任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)P到直線的距離與到點(diǎn)的距離之比為.

(1)求動點(diǎn)P的軌跡

(2)直線與曲線交于不同的兩點(diǎn)A,B(A,B軸的上方)

①當(dāng)A為橢圓與軸的正半軸的交點(diǎn)時,求直線的方程;

②對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案