(14分) 定義:若函數(shù)對(duì)于其定義域內(nèi)的某一數(shù),有,則稱(chēng)是的一個(gè)不動(dòng)點(diǎn). 已知函數(shù).
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)的圖象上,求b的最小值.
(參考公式:的中點(diǎn)坐標(biāo)為)
(14分)解: (1),由, ……………………1分
解得或,所以所求的不動(dòng)點(diǎn)為或3. …………3分
(2)令,則 ①
由題意,方程①恒有兩個(gè)不等實(shí)根,所以, ……5分
即恒成立, ……6分
則, ……………8分
(3)依題意設(shè), …………………9分
則AB中點(diǎn)C的坐標(biāo)為
又AB的中點(diǎn)在直線(xiàn)上
∴, ……………………10分
又是方程①的兩個(gè)根, ,即,
∴=-=- …………12分
∴當(dāng) 時(shí),bmin= …………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)定義:對(duì)于函數(shù),.若對(duì)定義域內(nèi)的恒成立,則稱(chēng)函數(shù)為函數(shù).(1)請(qǐng)舉出一個(gè)定義域?yàn)?img width=53 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/120/241520.gif">的函數(shù),并說(shuō)明理由;(2)對(duì)于定義域?yàn)?img width=47 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/122/241522.gif">的函數(shù),求證:對(duì)于定義域內(nèi)的任意正數(shù),均有;
(3)對(duì)于值域的函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年新課標(biāo)高三上學(xué)期單元測(cè)試(1)理科數(shù)學(xué)卷 題型:解答題
(本題14分)設(shè)定義在R上的函數(shù),對(duì)任意有, 且當(dāng) 時(shí),恒有,若.
(1)求;
(2)求證: 時(shí)為單調(diào)遞增函數(shù).
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省寧波市高三高考理數(shù)模擬試題 題型:解答題
(本小題滿(mǎn)分14分)
函數(shù)定義在區(qū)間[a, b]上,設(shè)“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設(shè),
,
若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱(chēng)函數(shù)
為區(qū)間上的“第k類(lèi)壓縮函數(shù)”.
(Ⅰ) 若函數(shù),求的最大值,寫(xiě)出的解析式;
(Ⅱ) 若,函數(shù)是上的“第3類(lèi)壓縮函數(shù)”,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高三上學(xué)期期中考試文科數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)分14分)
設(shè)數(shù)列的通項(xiàng)公式為. 數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值.
(Ⅰ)若,求;
(Ⅱ)若,求數(shù)列的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com