【題目】已知三個班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).

6

7

6

7

8

5

6

7

8

(Ⅰ)試估計班學(xué)生人數(shù);

(Ⅱ)從班和班抽出來的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨立,求甲的鍛煉時間大于乙的鍛煉時間的概率.

【答案】(I);(II).

【解析】

(Ⅰ)由已知先計算出抽樣比,進(jìn)而可估計C班的學(xué)生人數(shù);

(Ⅱ)根據(jù)古典概型概率計算公式,可求出該周甲的鍛煉時間比乙的鍛煉時間長的概率.

(I)由分層抽樣可得班人數(shù)為:(人);

(II)記從班選出學(xué)生鍛煉時間為班選出學(xué)生鍛煉時間為,則所有

,,,,,共9種情況,而滿足,有2種情況,所以,所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,E為線段AB的中點,將△ADE沿直線DE翻折成△ADE,使得平面ADE⊥平面BCDE,F為線段AC的中點.

(Ⅰ)求證:BF∥平面ADE;

(Ⅱ)求直線AB與平面ADE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)一段圖象如圖所示。

(1)求出函數(shù)的解析式;

(2) 函數(shù)的圖像可由函數(shù)y=sinx的圖像經(jīng)過怎樣的平移和伸縮變換而得到?

(3) 求出的單調(diào)遞增區(qū)間;

(4) 指出當(dāng)取得最小值時的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費.

1)當(dāng)每輛車的月租金定為元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域為的偶函數(shù),當(dāng)時,,若關(guān)于的方程,有且僅有5個不同實數(shù)根,則實數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集,)具有性質(zhì):對任意),兩數(shù)中至少有一個屬于集合,現(xiàn)給出以下四個命題:①數(shù)集具有性質(zhì);②數(shù)集具有性質(zhì);③若數(shù)集具有性質(zhì),則;④若數(shù)集)具有性質(zhì),則;其中真命題有________(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)公司今年初用98萬元購進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費用12萬元,從第二年開始包括維修費在內(nèi),每年所需費用均比上一年增加4萬元,該船每年捕撈的總收入為50萬元.

(1)該船捕撈第幾年開始盈利?

(2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬元的價格將捕撈船賣出;求并求總的盈利值.

查看答案和解析>>

同步練習(xí)冊答案