精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓經過點,離心率.

(1)求的方程;

(2)設直線經過點且與相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明: 為定值.

【答案】(1) (2)見解析

【解析】【試題分析】(1)依題意可知,解方程組可求得橢圓的標準方程.(2)當直線斜率斜率不存在時,不符合題意.當斜率存在時,設出直線的方程,聯立直線的方程和橢圓的方程,寫出韋達定理,計算的值,化簡后結果為,由此證明結論成立.

【試題解析】

(1)因為橢圓,經過點,所以

,所以,解得

故而可得橢圓的標準方程為:

(2)若直線的斜率不存在,則直線的方程為,

此時直線與橢圓相切,不符合題意.

設直線的方程為,即

聯立,得

,則

所以為定值,且定值為-1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF

1)求實數λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓:,直線.

(1)若直線與圓相切,的值;

(2)若直線與圓交于不同的兩點,當∠AOB為銳角時,k的取值范圍;

(3),是直線上的動點,作圓的兩條切線,切點為,探究:直線是否過定點。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,試求的單調區(qū)間;

(2)若內有極值,試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在長方體ABCD-A1B1C1D1中,AB=2,BC=2,CC1=3,長方體每條棱所在直線與過點C1的平面α所成的角都相等,則直線AC與平面α所成角的余弦值為( 。

A. 1 B. 0 C. 0 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn,點(n,Sn)(nN*)在y=x2的函數圖象上.

(1)求數列{an}的通項公式;

(2)若bn=(-1)n+1anan+1,求數列{bn}的前100項和T100

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為達到節(jié)水節(jié)電的目的,某家庭記錄了20天的日用電量xi(單位:度)的頻數分布表和這20天相應的日用水量yi(單位:m3)的頻率分布直方圖如下:

日用電量xi

[0,2)

[2,4)

[4,6)

[6,8)

[8,10)

頻數(天)

2

5

7

3

3

(1)假設水費為2.5元/m3,電費為0.6元/度,用以上數據估計該家庭日用電量的平均值和日用水量的平均值,并據此估計該家庭一個月的水費和電費一共是多少?(一個月按30天算,同一組中的數據以這組數據所在區(qū)間中點的值作代表);

(2)假設該家庭的日用水量y和日用電量x可用線性回歸模型來擬合,請利用(1)中的計算數據及所給的參考數據和公式,建立yx的回歸方程,預測若該家庭日用電量為20度時的日用水量是多少m3?(回歸方程的系數小數點后保留2位小數)

參考數據:xiyi=65,612

參考公式:回歸方程x中斜率和截距的公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點EAD的中點,,平面ABCD,且

(1)求證:

(2)線段PC上是否存在一點F,使二面角的余弦值是?若存在,請找出點F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,直線的極坐標方程為,且點在直線上.

(1)求的值及直線的直角坐標方程;

(2)圓的極坐標方程為,試判斷直線與圓的位置關系.

查看答案和解析>>

同步練習冊答案