分析 f(n)=n2sin$\frac{nπ}{2}({n∈{N^*}}$),可得f(2k)=4k2sinkπ=0,k∈N*,f(2k-1)=(2k-1)2(-1)k-1.又an=f(n)+f(n+1),可得a2k-1=(2k-1)2(-1)k-1,a2k=(2k+1)2(-1)k.可得:a2k-1+a2k=(-1)k•8k.即可得出.
解答 解:∵f(n)=n2sin$\frac{nπ}{2}({n∈{N^*}}$),
∴f(1)=1,f(2)=0,f(3)=-32,f(4)=0,…,
可得f(2k)=4k2sinkπ=0,k∈N*,f(2k-1)=(2k-1)2$sin\frac{(2k-1)π}{2}$=(2k-1)2(-1)k-1.
又an=f(n)+f(n+1),
∴a2k-1=f(2k-1)+f(2k)=(2k-1)2(-1)k-1,a2k=f(2k)+f(2k+1)=(2k+1)2(-1)k.
∴a2k-1+a2k=(2k-1)2(-1)k-1+(2k+1)2(-1)k=(-1)k•8k.
則a1+a2+a3+…+a2016=8×[-1+2-3+4+…-1007+1008]=4032.-.
故答案為:4032.
點(diǎn)評 本題考查了遞推關(guān)系、三角函數(shù)求值、分組求和,考查了分類討論方法、猜想歸納推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 64 | C. | 128 | D. | 254 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n-1 | B. | 2×3n-1 | C. | 2×3n-1-1 | D. | 3n-1-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com