3.有一種細胞每半小時分裂一次,由原來的一個分裂成兩個,那么一個這種細胞經(jīng)過3小時分裂成的細胞數(shù)為( 。
A.32B.64C.128D.254

分析 根據(jù)題意,建立該種細菌分裂的個數(shù)的數(shù)學模型,求出經(jīng)過3小時,細菌分裂6次的細菌個數(shù)即可.

解答 解:根據(jù)題意知,該種細菌分裂的個數(shù)滿足等比數(shù)列an=2n,n∈N*;
經(jīng)過3小時,細菌分裂6次,n=6;
細菌分裂的個數(shù)為a6=26=64.
故選:B.

點評 本題考查了等比數(shù)列的應用問題,解題時應根據(jù)題意,建立數(shù)學模型,利用數(shù)學知識解答實際問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.在四面體ABCD中,若E、F、H、I、J、K分別是棱AB、CD、AD、BC、AC、BD的中點,則EF、HI、JK相交于一點G,則點G為四面體ABCD的重心.設A(0,0,2),B(2,0,0),C(0,3,0),D(2,3,2).
(I)重心G的坐標為$(1,\frac{3}{2},1)$;
(II)若△BCD的重心為M,則$\frac{|\overrightarrow{AG}|}{|\overrightarrow{GM|}}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若三次方程ax3+bx2+cx+d=0的三個不同實根x1,x2,x3滿足;x1+x2+x3=0,x1x2x3=0,則下列關系式中恒成立的是( 。
A.ac=0B.ac<0C.ac>0D.a+c>0
E.a+c<0         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若橢圓$\frac{x^2}{4}+{y^2}$=1上一點到左焦點的距離為1,則該點到右焦點的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(n)=n2sin$\frac{nπ}{2}({n∈{N^*}}$),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為4023.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等比數(shù)列{an}各項都為正數(shù),且滿足a2=2,a6=6,a4=( 。
A.4B.8C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a<0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax+b=0,則下列必為真命題的是( 。
A.?x∈R,f(x)>f(x0B.?x∈R,f(x-1)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x+1)≥f(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=$\frac{7}{4}$.

查看答案和解析>>

同步練習冊答案