3.集合A={x||x|≤2},集合B={x|x<a},如果A∩B=∅,那么a的范圍是( 。
A.a=2B.a≤2C.a=--2D.a≤--2

分析 求出A中不等式的解集確定出A,根據(jù)A與B的交集為空集,確定出a的范圍即可.

解答 解:由A中不等式變形得:-2≤x≤2,即A={x|-2≤x≤2},
∵B={x|x<a},且A∩B=∅,
∴實(shí)數(shù)a的范圍是a≤-2,
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有一條筆直的河流,倉庫A到河岸所在直線MN的距離是10km,AC⊥MN于C,碼頭B到C的距離為20km.現(xiàn)有一批貨物要從A運(yùn)到B.已知貨物走陸路時(shí),單位里程的運(yùn)價(jià)是水路的2倍,貨物走陸路到達(dá)D后再由水路到達(dá)B,問點(diǎn)D應(yīng)選在離C多遠(yuǎn)處才能使總運(yùn)費(fèi)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=x2+2ax+a2在區(qū)間[-1,2]上的最大值是4,則實(shí)數(shù)a的值為0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an+2n-1}的前n項(xiàng)和Sn=2n+n2-1,則數(shù)列{an}的通項(xiàng)公式為2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若直線l1:ax+2y-8=0與l2:x+2y+4=0平行,則a的值為( 。
A.-2B.1或2C.1D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+bx2(a≠0),在x=1時(shí)取得極值3,求:
(1)f(x)的表達(dá)式;
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)生產(chǎn)某種產(chǎn)品x件的費(fèi)用為C(x)=900+20x+x2(萬元),試確定使得平均單位成本最小時(shí)的x值,并給出最小平均成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=alnx+b(x2-3x+2),其中a,b∈R.
(I)若a=b,討論f(x)極值(用a表示);
(Ⅱ)當(dāng)a=1,b=$-\frac{1}{2}$,函數(shù)g(x)=2f(x)-(λ+3)x+2,若x1,x2(x1≠x2)滿足g(x1)=g(x2)且x1+x2=2x0,證明:g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+c的圖象經(jīng)過原點(diǎn),且在x=1處取得極值,
(1)若y=f(x)在原點(diǎn)處的切線的斜率為-3,求f(x)的解析式和極值;
(2)若f(x)在x=1處取得的是極小值,問是否存在實(shí)數(shù)m,n,t∈[1,$\frac{3}{2}$]使得f(m)+f(n)<f(t)成立,若存在,求實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案