如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,則第10行第4個(gè)數(shù)(從左往右數(shù))為( )
A. | B. |
C. | D. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
菱形的對(duì)角線相等,正方形是菱形,所以正方形的對(duì)角線相等。在以上三段論的推理中( )
A.大前提錯(cuò)誤 | B.小前提錯(cuò)誤 | C.推理形式錯(cuò)誤 | D.結(jié)論錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:若整數(shù)系數(shù)的一元二次方程 有有理實(shí)數(shù)根,那么,,中至少有一個(gè)是偶數(shù),下列假設(shè)中正確的是( )
A.假設(shè),,都是偶數(shù) |
B.假設(shè),,都不是偶數(shù) |
C.假設(shè),,至多有一個(gè)是偶數(shù) |
D.假設(shè),,至多有兩個(gè)偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2.則它們的面積之比為1:4.類似地,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為( )
A.1:2 | B.1:4 | C.1:6 | D.1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
四個(gè)小動(dòng)物換座位,開始是猴、兔、貓、鼠分別坐在1、2、3、4號(hào)位置上(如圖),第1次前后排動(dòng)物互換位置,第2次左右列互換座位,……這樣交替進(jìn)行下去,那么第2014次互換座位后,小兔的位置對(duì)應(yīng)的是( )
A.編號(hào)1 | B.編號(hào)2 | C.編號(hào)3 | D.編號(hào)4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利
用歸納法假設(shè)證n=k+1時(shí)的情況,只需展開( ).
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
觀察下列事實(shí):|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12,…,則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為( )
A.76 | B.80 |
C.86 | D.92 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在用數(shù)學(xué)歸納法證明凸n邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證( )
A.n=1時(shí)成立 | B.n=2時(shí)成立 |
C.n=3時(shí)成立 | D.n=4時(shí)成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,模塊①~⑤均由4個(gè)棱長(zhǎng)為1的小正方體構(gòu)成,模塊⑥由15個(gè)棱長(zhǎng)為1的小正方體構(gòu)成.現(xiàn)從模塊①~⑤中選出三個(gè)放到模塊⑥上,使得模塊⑥成為一個(gè)棱長(zhǎng)為3的大正方體,則下列選擇方案中,能夠完成任務(wù)的為( )
A.模塊①,②,⑤ | B.模塊①,③,⑤ |
C.模塊②,④,⑤ | D.模塊③,④,⑤ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com