精英家教網 > 高中數學 > 題目詳情

【題目】由國家公安部提出,國家質量監(jiān)督檢驗檢疫總局發(fā)布的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗標準(GB/T19522-2010)》于2011年7月1日正式實施.車輛駕駛人員酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”見圖,且圖表示的函數模型,則該人喝一瓶啤酒后至少經過多長時間才可以駕車(時間以整小時計算)?(參考數據:,

駕駛行為類型

閥值

飲酒后駕車

醉酒后駕車

車輛駕車人員血液酒精含量閥值

喝1瓶啤酒的情況

A. B. C. D.

【答案】B

【解析】

本道題結合題意,建立不等式,即可.

當酒精含量低于20時才可以開車,故結合分段函數建立不等式,

,解得,取整數,故為6個小時,故選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,其中,若僅存在兩個正整數使得,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的正六邊形ABCDEF的中心為O,GH、M、N、PQ為圓O上的點,△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分別是以ABBC,CDDEEF,FA為底邊的等腰三角形,沿虛線剪開后,分別以AB,BC,CDDE,EF,FA為折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得G、H、M、N、P、Q重合,得到六棱錐.當正六邊形ABCDEF的邊長變化時,所得六棱錐體積(單位:cm3)的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】由國家公安部提出,國家質量監(jiān)督檢驗檢疫總局發(fā)布的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗標準(GB/T19522-2010)》于2011年7月1日正式實施.車輛駕駛人員酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”見圖,且圖表示的函數模型,則該人喝一瓶啤酒后至少經過多長時間才可以駕車(時間以整小時計算)?(參考數據:,

駕駛行為類型

閥值

飲酒后駕車

,

醉酒后駕車

車輛駕車人員血液酒精含量閥值

喝1瓶啤酒的情況

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)求不等式|x1||x2|≥5的解集;

(2)若關于x的不等式|ax2|<3的解集為,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某鋼鐵加工廠新生產一批鋼管,為了了解這批產品的質量狀況,檢驗員隨機抽取了件鋼管作為樣本進行檢測,將它們的內徑尺寸作為質量指標值,由檢測結果得如下頻率分布表和頻率分布直方圖:

分組

頻數

頻率

合計

(1)求,;

(2)根據質量標準規(guī)定:鋼管內徑尺寸大于等于或小于為不合格,鋼管內徑尺寸在為合格,鋼管內徑尺寸在為優(yōu)等.鋼管的檢測費用為元/根,把樣本的頻率分布作為這批鋼管的概率分布.

(i)若從這批鋼管中隨機抽取根,求內徑尺寸為優(yōu)等鋼管根數的分布列和數學期望;

(ii)已知這批鋼管共有根,若有兩種銷售方案:

第一種方案:不再對該批剩余鋼管進行檢測,扣除根樣品中的不合格鋼管后,其余所有鋼管均以元/根售出;

第二種方案:對該批鋼管進行一一檢測,不合格鋼管不銷售,并且每根不合格鋼管損失元,合格等級的鋼管元/根,優(yōu)等鋼管元/根.

請你為該企業(yè)選擇最好的銷售方案,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】疫情期間,有一批貨物需要用汽車從城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.據調查統計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數分布如下表:

所用時間

10

11

12

13

通過公路1的頻數

20

40

20

20

通過公路2的頻數

10

40

40

10

1)為進行某項研究,從所用時間為1260輛汽車中隨機抽取6輛,若用分層隨機抽樣的方法抽取,求從通過公路1和公路2的汽車中各抽取幾輛:

2)若從(1)的條件下抽取的6輛汽車中,再任意抽取2輛汽車,求這2輛汽車至少有1輛通過公路1的概率;

3)假設汽車A只能在約定時間的前11h出發(fā),汽車B只能在約定時間的前12h出發(fā).為了盡最大可能在各自允許的時間內將貨物從城市甲運到城市乙,汽車A和汽車B應如何選擇各自的道路?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,求曲線在點處的切線方程;

(2)若函數在其定義域內為增函數,求的取值范圍;

(3)在(2)的條件下,設函數,若在上至少存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若處有極值,問是否存在實數m,使得不等式對任意恒成立?若存在,求出m的取值范圍;若不存在,請說明理由.;

2)若,設.

①求證:當時,;

②設,求證:

查看答案和解析>>

同步練習冊答案