分析 (1)化簡函數(shù),根據(jù)最小正周期為π求出ω的值,得到解析式,當(dāng)x∈[-π,π]時(shí),求內(nèi)層整體的范圍,結(jié)合三角函數(shù)的性質(zhì)求單調(diào)增區(qū)間;
(2)由題意:存在x∈[0,$\frac{π}{6}$],使f(x-$\frac{π}{4}$)>|m-2|成立,等價(jià)于f(x-$\frac{π}{4}$)max>|m-2|成立,只需要求f(x-$\frac{π}{4}$)max的值即可通過解不等式得到m的取值的范圍.
解答 解:(1)由題意:函數(shù)f(x)=4cosωxsin(ωx+$\frac{2π}{3}$)-$\sqrt{3}$
化簡得:f(x)=4cosωx(sinωxcos$\frac{2π}{3}$+cosωxsin$\frac{2π}{3}$)$-\sqrt{3}$
=-2sinωxcosωx+$2\sqrt{3}$cos2ωx$-\sqrt{3}$
=-sin2ωx+$\sqrt{3}$+$\sqrt{3}$cos2ωx$-\sqrt{3}$
=2cos(2ωx+$\frac{π}{6}$)
∵最小正周期為π,即$T=π=\frac{2π}{2ω}$,解得ω=1
∴f(x)=2cos(2x+$\frac{π}{6}$)
當(dāng)x∈[-π,π]時(shí),則:2x+$\frac{π}{6}$∈[$-\frac{11π}{6}$,$\frac{13π}{6}$]
由余弦函數(shù)圖象可知:[$-\frac{7π}{12}$,$-\frac{π}{12}$]和[$\frac{5π}{12}$,$\frac{11π}{12}$]單調(diào)增區(qū)間.
(2)由題意:存在x∈[0,$\frac{π}{6}$],使f(x-$\frac{π}{4}$)>|m-2|成立,等價(jià)于f(x-$\frac{π}{4}$)max>|m-2|成立,
∵f(x)=2cos(2x+$\frac{π}{6}$)
∴f(x-$\frac{π}{4}$)=2cos(2x$-\frac{π}{3}$)
又∵x∈[0,$\frac{π}{6}$],∴2x$-\frac{π}{3}$∈[$-\frac{π}{3}$,$\frac{2π}{3}$]
那么:f(x-$\frac{π}{4}$)max=2
所以有:|m-2|<2,解得:0<m<4
故m的取值范圍是(0,4).
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的化簡能力以及余弦函數(shù)性質(zhì)的運(yùn)用,值域的求法來解決恒成立的問題.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 任意兩條直線確定一個(gè)平面 | |
B. | 三條平行直線最多確定三個(gè)平面 | |
C. | 棱長為1的正方體的內(nèi)切球的表面積為4π | |
D. | 若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com