【題目】某經(jīng)銷(xiāo)商從沿海城市水產(chǎn)養(yǎng)殖廠購(gòu)進(jìn)一批某海魚(yú),隨機(jī)抽取50條作為樣本進(jìn)行統(tǒng)計(jì),按海魚(yú)重量(克)得到如圖的頻率分布直方圖:
(Ⅰ)若經(jīng)銷(xiāo)商購(gòu)進(jìn)這批海魚(yú)100千克,試估計(jì)這批海魚(yú)有多少條(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)根據(jù)市場(chǎng)行情,該海魚(yú)按重量可分為三個(gè)等級(jí),如下表:

等級(jí)

一等品

二等品

三等品

重量(g)

[165,185]

[155,165)

[145,155)

若經(jīng)銷(xiāo)商以這50條海魚(yú)的樣本數(shù)據(jù)來(lái)估計(jì)這批海魚(yú)的總體數(shù)據(jù),視頻率為概率.現(xiàn)從這批海魚(yú)中隨機(jī)抽取3條,記抽到二等品的條數(shù)為X,求x的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ)由頻率分布直方圖得每條海魚(yú)平均重量為:

=150×0.016×10+160×0.040×10+170×0.032×10+180×0.012×10=164(g),

∵經(jīng)銷(xiāo)商購(gòu)進(jìn)這批海魚(yú)100千克,

∴估計(jì)這批海魚(yú)有:(100×1000)÷164≈610(條).

(Ⅱ)從這批海魚(yú)中隨機(jī)抽取3條,[155,165)的頻率為0.04×10=0.4,

則X~B(3,0.4),

P(X=0)= =0.216,

P(X=1)= =0.432,

P(X=2)= =0.288,

P(X=3)= =0.064,

∴X的分布列為:

X

0

1

2

3

P

0.216

0.432

0.288

0.064

∴E(X)=3×0.4=1.2.


【解析】(Ⅰ)由頻率分布直方圖先求出每條海魚(yú)平均重量,由此能估計(jì)這批海魚(yú)有多少條.(Ⅱ)從這批海魚(yú)中隨機(jī)抽取3條,[155,165)的頻率為0.04×10=0.4,則X~B(3,0.4),由此能求出X的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖和離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紡織廠訂購(gòu)一批棉花,其各種長(zhǎng)度的纖維所占的比例如下表所示:

(1)請(qǐng)估計(jì)這批棉花纖維的平均長(zhǎng)度與方差.

(2)如果規(guī)定這批棉花纖維的平均長(zhǎng)度為4.90厘米,方差不超過(guò)1.200,兩者允許誤差均不超過(guò)0.10視為合格產(chǎn)品.請(qǐng)你估計(jì)這批棉花的質(zhì)量是否合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有如下性質(zhì)如果常數(shù),那么該函數(shù)上是減函數(shù)上是增函數(shù)

(1)用函數(shù)單調(diào)性定義來(lái)證明上的單調(diào)性;

(2)已知, ,求函數(shù)的值域;

(3)對(duì)于(2)中的函數(shù)和函數(shù),若對(duì)任意,總存在使得成立,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物網(wǎng)站在2017年11月開(kāi)展“全部6折”促銷(xiāo)活動(dòng),在11日當(dāng)天購(gòu)物還可以再享受“每張訂單金額(6折后〕滿(mǎn)300元時(shí)可減免100元”.小淘在11日當(dāng)天欲購(gòu)入原價(jià)48元(單價(jià))的商品共42件,為使花錢(qián)總數(shù)最少,他最少需要下的訂單張數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,函數(shù) (a>0),若存在 ,使得 成立,則實(shí)數(shù) 的取值范圍是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,漢諾塔問(wèn)題是指有3根桿子A,B,CB桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動(dòng)一個(gè)碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個(gè)碟子全部移到A桿上,最少需要移動(dòng)( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

同步練習(xí)冊(cè)答案