A. | (0,3$\sqrt{2}$) | B. | (3$\sqrt{2}$,+∞) | C. | (-∞,3$\sqrt{2}$) | D. | (0,$\sqrt{2}$)∪(3$\sqrt{2}$,+∞) |
分析 判斷出集合M、N的幾何意義,再由圓與圓的位置關(guān)系和交集的運算,列出不等式求出r的范圍.
解答 解:M={(x,y)|(x+4)2+(y+4)2=8},N={(x,y)|(x-1)2+(y-1)2=r2(r>0)},
所以集合M是以(-4,-4)為圓心,$\sqrt{8}$為半徑的圓,
集合N是以(1,1)為圓心,r為半徑的圓,
由M∩N=∅得兩個圓外離或內(nèi)含,
所以$\sqrt{8}$+r<$\sqrt{{(1+4)}^{2}{+(1+4)}^{2}}$=5$\sqrt{2}$
或|$\sqrt{8}$-r|>5$\sqrt{2}$,
解得r>7$\sqrt{2}$或0<r<3$\sqrt{2}$,
故選:A.
點評 本題考查交集以及運算,圓與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | ($\frac{7}{4}$,2) | C. | (2,2) | D. | (3,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2=3 | B. | y=$\sqrt{1-{x}^{2}}$ | C. | x2+2xy=1(x≠±1) | D. | x2+y2=9(x≠0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | [0,1] | C. | (0,2] | D. | [0,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com