19.已知函數(shù)f(x)=3loga(4x-7)+2(a>0且a≠1)過(guò)定點(diǎn)P,則P點(diǎn)坐標(biāo)( 。
A.(1,2)B.($\frac{7}{4}$,2)C.(2,2)D.(3,2)

分析 根據(jù)loga1=0恒成立,令真數(shù)部分為1,可得定點(diǎn)坐標(biāo).

解答 解:當(dāng)4x-7=1,即x=2時(shí),loga(4x-7)=0恒成立,
∴f(2)=2恒成立,
故P點(diǎn)的坐標(biāo)為(2,2),
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是恒成立問(wèn)題,熟練掌握對(duì)數(shù)的性質(zhì):loga1=0恒成立,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知全集U={-1,0,1,2},集合A={-1,2},則∁UA={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四邊形ABCD中,|${\overrightarrow{AC}}$|=4,$\overrightarrow{BA}$•$\overrightarrow{BC}$=12,E為AC的中點(diǎn).
(1)若cos∠ABC=$\frac{12}{13}$,求△ABC的面積S△ABC;
(2)若$\overrightarrow{BE}$=2$\overrightarrow{ED}$,求$\overrightarrow{DA}$•$\overrightarrow{DC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長(zhǎng)A1C1至點(diǎn)P,使C1P=A1C1,連接AP交棱CC1于點(diǎn)D.以A1為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.
(1)寫(xiě)出A1、B、B1、C、D、P的坐標(biāo);
(2)求異面直線A1B與PB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=x-8與此拋物線交于A、B兩點(diǎn),與x軸交于點(diǎn)C,O為坐標(biāo)原點(diǎn),若$\overrightarrow{FC}$=3$\overrightarrow{OF}$.
(1)求此拋物線的方程;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x-1)=$\frac{x}{x+1}$,則函數(shù)f(x)的解析式為(  )
A.f(x)=$\frac{x+1}{x+2}$B.f(x)=$\frac{x}{x+1}$C.f(x)=$\frac{x-1}{x}$D.f(x)=$\frac{1}{x+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合M={1,2,m2-3m-1},N={-1,3},M∩N={3},則m的值為(  )
A.4,-1B.-1C.1,-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.研究y=x${\;}^{-\frac{4}{3}}$的定義域、奇偶性、單調(diào)性,作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若M={(x,y)|(x+4)2+(y+4)2=8},N={(x,y)|(x-1)2+(y-1)2=r2(r>0)},且M∩N=∅,則r范圍可以是( 。
A.(0,3$\sqrt{2}$)B.(3$\sqrt{2}$,+∞)C.(-∞,3$\sqrt{2}$)D.(0,$\sqrt{2}$)∪(3$\sqrt{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案