【題目】已知集合A={x|x2+2x﹣8≥0},B={x|1<x<5},U=R,則CU(A∪B)(
A.(﹣4,1]
B.[﹣4,1)
C.(﹣2,1]
D.[﹣2,1)

【答案】A
【解析】解:∵集合A={x|x2+2x﹣8≥0}={x|x≤﹣4或x≥2},

B={x|1<x<5},U=R,

∴A∪B={x|x≤﹣4或x<1},

∴CU(A∪B)={x|﹣4<x≤1}=(﹣4,1].

故選:A.

【考點精析】本題主要考查了交、并、補集的混合運算的相關(guān)知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)、g(x)滿足:對任意x,y∈R有f(x﹣y)=f(x)g(y)﹣f(y)g(x)且f(1)≠0.若f(1)=f(2),則g(﹣1)+g(1)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:方程x2+2mx+1=0有兩個不相等的正根;q:方程x2+2(m-2)x-3m+10=0無實根.則使p∨q為真,p∧q為假的實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場擬對商品進行促銷,現(xiàn)有兩種方案供選擇.每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據(jù)以往促銷的統(tǒng)計數(shù)據(jù),若實施方案1,頂計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4.第二個月銷量是笫一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預(yù)計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令ξi(i=1,2)表示實施方案i的第二個月的銷量是促銷前銷量的倍數(shù).
(Ⅰ)求ξ1 , ξ2的分布列:
(Ⅱ)不管實施哪種方案,ξi與第二個月的利潤之間的關(guān)系如表,試比較哪種方案第二個月的利潤更大.

銷量倍數(shù)

ξi≤1.7

1.7<ξi<2.3

ξi2.3

利潤(萬元)

15

20

25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,若不等式|x﹣4|+|x﹣3|<a在實數(shù)集R上的解集不是空集,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x<0,﹣1<y<0,用不等號將x,xy,xy2從大到小排列得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=x3﹣3x2+2在區(qū)間[﹣1,1]上的最大值是(
A.﹣2
B.0
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】復(fù)數(shù)z=(1+i)+(﹣2+2i)在復(fù)平面內(nèi)對應(yīng)的點位于第象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是R上的偶函數(shù),且在(﹣∞,0]上是減函數(shù),若f(a)≥f(2),則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案