【題目】直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,A1A=AB,E為BB1延長(zhǎng)線上的一點(diǎn),D1E⊥面D1AC.設(shè)AB=2.

(1)求二面角E﹣AC﹣D1的大小;
(2)在D1E上是否存在一點(diǎn)P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,說明理由.

【答案】
(1)解:設(shè)AC與BD交于O,

如圖以O(shè)為原點(diǎn),OA,OB,為x軸,y軸,過O作面ABCD的垂線為z軸,建立空間直角坐標(biāo)系,

則A( ,0,0),B(0,1,0),C(﹣ ,0,0),D(0,﹣1,0),D1(0,﹣1,2),

設(shè)E(0,1,2+h),

=(0,2,h), =(2 ,0,0), =( ),

∵D1E⊥平面D1AC,∴D1E⊥AC,D1E⊥D1A,

∴2﹣2h=0,∴h=1,即E(0,1,3),

=(0,2,1), =(﹣ ,1,3),

設(shè)平面EAC的法向量為 =(x,y,z),

則由 ,令z=﹣1,得 =(0,3,﹣1),

∵D1E⊥面D1AC,∴平面D1AC的法向量為 =(0,2,1),

∴cos< >= = = ,

∴二面角E﹣AC﹣D1的大小為45°.


(2)解:設(shè) = =λ( ),

= =(0, , ),

= + =(﹣ ,﹣1,0)+(0, , )=(﹣ , , ),

∵A1P∥面EAC,∴ ,

∴﹣ =0,

解得 ,

∴存在點(diǎn)P使A1P∥面EAC,此時(shí)D1P:PE=2:3.


【解析】(1)設(shè)AC與BD交于O,以O(shè)為原點(diǎn),OA,OB,為x軸,y軸,過O作面ABCD的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角E﹣AC﹣D1的大小.(2)設(shè) = =λ( ),得 =(0, , ), =(﹣ , ),由此能求出存在點(diǎn)P使A1P∥面EAC,此時(shí)D1P:PE=2:3.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AD=1,E為CD的中點(diǎn).

(1)求證:B1E⊥AD1
(2)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,點(diǎn)M是SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N.

(1)求證:SC⊥平面AMN;
(2)求二面角D﹣AC﹣M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】與圓(x+1)2+y2=1和圓(x﹣5)2+y2=9都相切的圓的圓心軌跡是(
A.橢圓和雙曲線
B.兩條雙曲線
C.雙曲線的兩支
D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示幾何體的三視圖,則該幾何體的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),(x∈R)上任一點(diǎn)(x0 , y0)的切線方程為y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函數(shù)f(x)的單調(diào)遞減區(qū)間是(
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把形如 的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)法數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得 ,兩邊對(duì)x求導(dǎo)數(shù),得 ,于是 ,運(yùn)用此方法可以求得函數(shù) 在(1,1)處的切線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB=2,AD=1,M為CD的中點(diǎn).如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)若點(diǎn)E是線段DB上的中點(diǎn),求三棱錐E﹣ABM的體積V1與四棱錐D﹣ABCM的體積V2之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖正方體ABCD﹣A1B1C1D1 , M,N分別為A1D1和AA1的中點(diǎn),則下列說法中正確的個(gè)數(shù)為(
①C1M∥AC;
②BD1⊥AC;
③BC1與AC的所成角為60°;
④B1A1、C1M、BN三條直線交于一點(diǎn).
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案