15.若甲、乙、丙三組科研人員人數(shù)分別為12,18,m,現(xiàn)用分層抽樣方法從這三組人員中抽取n人組成一個科考隊,若在乙組中抽3人,丙組中抽4人,求m,n的值.

分析 先求出每個個體被抽到的概率,再分別根據(jù)乙組中抽3人,丙組中抽4人,即可求出m,n的值

解答 解:∵每個個體被抽到的概率等于$\frac{n}{12+18+m}$,乙組中抽3人,丙組中抽4人
則$\frac{n}{12+18+m}$×18=3,$\frac{n}{12+18+m}$×m=4,
解得m=24,n=9

點評 本題主要考查分層抽樣的定義和方法,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應抽取的個體數(shù),屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.設定義域為R的奇函數(shù)f(x)單調(diào)遞減,且f(cos2θ+2msinθ)+f(-2m-2)>0恒成立,則m的范圍是(  )
A.$(1-\sqrt{2},+∞)$B.$[1-\sqrt{2},+∞)$C.$(-\frac{1}{2},+∞)$D.$[-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知拋物線C:y2=2px(p>1)的焦點為F,直線y=m與y軸的交點為P,與C的交點為Q(x0,y0),且$\frac{|QF|}{|PQ|}$=p.
(1)當x0+p取得最小值時,求p的值;
(2)當x0=1時,若直線l與拋物線C相交于A,B兩點,與圓M:(x-n)2+y2=1相交于D,E兩點,O為坐標原點,OA⊥OB,試問:是否存在實數(shù)n,使得|DE|的長為定值?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線C頂點在原點,關于x軸對稱,且經(jīng)過P(1,2).
(Ⅰ)求拋物線C的標準方程及準線方程;
(Ⅱ)已知不過點P且斜率為1的直線l與拋物線C交于A,B兩點,若AB為直徑的圓經(jīng)過點P,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知一個算法的程序框圖如圖所示,當輸出的結(jié)果為$\frac{1}{2}$時,則輸入的x值為(  )
A.$\sqrt{2}$B.1C.-1或$\sqrt{2}$D.-1或$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足a5=13,an+1-an=3(n∈N*),數(shù)列{bn}的前n項和Sn=1-$\frac{1}{{2}^{n}}$(n∈N*).
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記Tn=a1b1+a2b2+a3b3+…+anbn,比較Tn與4的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,若a:b:c=4:5:6,則$\frac{sin2A}{sinC}$=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.圓x2+y2-4x-4y=0上的點到直線x+y-6=0的最大距離和最小距離的差是(  )
A.$\sqrt{2}$B.$3\sqrt{2}$C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合A={0,1,2,3},集合B={-1,1},則A∩B=( 。
A.{1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

同步練習冊答案