A. | $[{-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6}}]$ | B. | $[{-\frac{1}{6},\frac{1}{6}}]$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $[{-\frac{1}{3},\frac{1}{3}}]$ |
分析 化簡f(x)在[0,+∞)上的解析式,根據(jù)f(x)的奇偶性做出函數(shù)圖象,根據(jù)條件③得出不等式解出.
解答 解:∵f(x)+f(-x)=0,∴f(x)是奇函數(shù).
當(dāng)m=0時,f(x)=x,顯然符合題意.
當(dāng)m≠0時,f(x)在[0,+∞)上的解析式為:f(x)=$\left\{\begin{array}{l}{-x,0≤x≤{m}^{2}}\\{-{m}^{2},{m}^{2}<x<2{m}^{2}}\\{x-3{m}^{2},x≥2{m}^{2}}\end{array}\right.$,
做出f(x)的函數(shù)圖象如圖所示:
∵任意x∈R,有f(x)≥f(x-1)成立,
∴6m2≤1,解得-$\frac{\sqrt{6}}{6}$≤m≤$\frac{\sqrt{6}}{6}$.
故選A.
點評 本題考查了奇函數(shù)的判斷與性質(zhì),函數(shù)圖象的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1 | B. | $\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -2 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com