【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費金額分成組,制作成如下的頻率分布直方圖.
(1)求該名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)
(2)若再從這名會員中選出一名會員參加幸運大抽獎,幸運大抽獎方案如下:會員最多有兩次抽獎機會,每次抽獎的中獎概率均為,第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋擲一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎.規(guī)定:拋出的硬幣,若反面朝上,則會員獲得元獎金,不進(jìn)行第二次抽獎;若正面朝上,會員需進(jìn)行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金元,如果未中獎,則所獲得的獎金為元.若參加幸運大抽獎的會員所獲獎金(單位:元)用表示,求的分布列與期望值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
⑴若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
⑵若(為自然對數(shù)的底數(shù)),證明:當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).當(dāng)時,若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年3月7日《科學(xué)網(wǎng)》刊登“動物可以自我馴化”的文章表明:關(guān)于野生小鼠的最新研究,它們在幾乎沒有任何人類影響的情況下也能表現(xiàn)出進(jìn)化的跡象——皮毛上白色的斑塊以及短鼻子.為了觀察野生小鼠的這種表征,從有2對不同表征的小鼠(白色斑塊和短鼻子野生小鼠各一對)的實驗箱中每次拿出一只,不放回地拿出2只,則拿出的野生小鼠不是同一表征的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點、公共站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,是共享經(jīng)濟(jì)的一種新形態(tài).某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數(shù)量之間的關(guān)系”進(jìn)行了調(diào)查,并將相關(guān)數(shù)據(jù)統(tǒng)計如下表:
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
根據(jù)以上數(shù)據(jù),研究人員設(shè)計了兩種不同的回歸分析模型,得到兩個擬合函數(shù):
模型甲: ,模型乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1元)(備注: , 稱為相應(yīng)于點的殘差);
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | 2.4 | 2 | 1.8 | 1.4 | |
殘差 | 0 | 0 | 0.1 | 0.1 | ||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個模型擬合效果更好.
(2)這家企業(yè)在城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應(yīng)求,于是該企業(yè)決定增加單車投放量.根據(jù)市場調(diào)查,市場投放量達(dá)到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達(dá)到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤=收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com