18.拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上且過(guò)點(diǎn)P(4,1),則拋物線的標(biāo)準(zhǔn)方程為x2=16y.

分析 設(shè)拋物線方程,代入P的坐標(biāo),求解即可.

解答 解:拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,
設(shè)拋物線方程為:x2=my,拋物線過(guò)點(diǎn)P(4,1),
可得16=m,
所求的拋物線方程為:x2=16y,
故答案為:x2=16y,

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)以及拋物線方程的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=x2-2lnx的單調(diào)遞減區(qū)間為( 。
A.(-1,1)B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在${(\sqrt{x}+\frac{1}{{2•\root{4}{x}}})^n}$的展開(kāi)式中,前三項(xiàng)的系數(shù)成等差數(shù)列.
(Ⅰ)求展開(kāi)式中含有x的項(xiàng)的系數(shù);     
(Ⅱ)求展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.向量$\overrightarrow{a}$=(5,2),$\overrightarrow$=(-4,-3),$\overrightarrow{c}$=(x,y),若3$\overrightarrow{a}$-2$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,則$\overrightarrow{c}$=( 。
A.(23,12)B.(7,0)C.(-7,0)D.(-23,-12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-2,-1).
(1)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角θ;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若不等式$\frac{1}{2}{x^2}-{y^2}$≤2cx(y-x)對(duì)任意滿足x>y>0的實(shí)數(shù)x,y恒成立,則實(shí)數(shù)c的最大值為$\frac{\sqrt{2}}{2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)f(x)是定義在R上的奇函數(shù),且f(x)=2x+$\frac{m}{2^x}$,設(shè)g(x)=$\left\{{\begin{array}{l}{f(x),}&{x>1}\\{f(-x),}&{x≤1}\end{array}}$,若函數(shù)y=g(x)-t有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是$(\frac{3}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=g(x)的圖象,若$f({\frac{α}{2}})=\frac{1}{2},α∈({\frac{π}{3},\frac{5π}{6}})$,求g(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x3-2x2+x+3,
(1)$x∈[{\frac{2}{3},1}]$時(shí)求值域.
(2)若F(x)=f(x)+m有三個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案