12.已知圓C:x2+y2+8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A,B兩點,且|AB|=2$\sqrt{2}$時,求直線l的方程.

分析 (1)若直線l與圓C相切,則有$\frac{|-4+2a|}{\sqrt{{a}^{2}+1}}$=2,即可求出a;
(2)過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),|CD|=$\frac{|-4+2a|}{\sqrt{{a}^{2}+1}}$=$\sqrt{2}$,即可求直線l的方程.

解答 解:將圓C的方程x2+y2-8y+12=0配方得標準方程為x2+(y+4)2=4,則此圓的圓心為(0,-4),半徑為2.
(1)若直線l與圓C相切,
則有$\frac{|-4+2a|}{\sqrt{{a}^{2}+1}}$=2,∴a=$\frac{3}{4}$;         (6分)
(2)過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),
|CD|=$\frac{|-4+2a|}{\sqrt{{a}^{2}+1}}$=$\sqrt{2}$,∴a=1或7.
故所求直線方程為7x+y+14=0或x+y+2=0.(12分)

點評 本題考查直線與圓的位置關(guān)系,考查點到直線的距離公式,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定義在[-1,1]上的奇函數(shù),f(x)的最大值為$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函數(shù)f(x)的解析式;
( II)判斷函數(shù)f(x)的單調(diào)性;并證明你的結(jié)論;
( III)當存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立時,請同學們探究實數(shù)m的所有可能取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知定義域為R的奇函數(shù)f(x),當x>0時,f(x)=x2-3.
(1)求函數(shù)f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知f(x)=x+$\frac{1}{x}$-2,f(a)=3,則f(-a)=( 。
A.-8B.-7C.-5D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.夏天到了,某中學餐飲中心為了解學生對冷凍降暑食品的飲食習慣,在全校二年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡冷凍不喜歡冷凍合計
女學生602080
男學生101020
合計7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“女學生和男學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調(diào)查的北方學生中有5名高二(15)班的學生,其中2名不喜歡冷凍降暑食品.現(xiàn)在從這5名學生中隨機抽取2人,求至多有1人喜歡冷凍降暑食品的概率.
P(χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin2x+cos($\frac{π}{3}$-2x).
(1)求f(x)在[0,π]上的減區(qū)間;
(2)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=2,且向量$\overrightarrow m$=(1,2)與向量$\overrightarrow n$=(sinB,sinC)共線,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設等比數(shù)列{an}的前n項和為Sn,且S3=7,S6=63.
(1)求an和Sn
(2)記數(shù)列{Sn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=$\frac{12}{13}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(-$\frac{π}{4}$,$\frac{π}{4}$),則sin(α+β)=$\frac{56}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k-4,k∈Z},則A,B兩個集合的關(guān)系:A⊆B(橫線上填入⊆,?或=)

查看答案和解析>>

同步練習冊答案