A. | 2 | B. | π | C. | $\frac{\sqrt{π}}{2}$ | D. | $\frac{\sqrt{3π}}{4}$ |
分析 利用三角函數(shù)的單調(diào)性對稱性即可得出.
解答 解:函數(shù)f(x)=sinωx-cosωx=$\sqrt{2}$$sin(ωx-\frac{π}{4})$(ω>0),z∈R,
∵函數(shù)f(x)在(-ω,ω)上是增函數(shù),
∴2kπ-$\frac{π}{2}$≤ωx-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得
函數(shù)f(x)的單調(diào)遞增區(qū)間為:$[\frac{2kπ-\frac{π}{4}}{ω},\frac{2kπ+\frac{3π}{4}}{ω}]$,k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{π}{4}}{ω}$,ω≤$\frac{2kπ+\frac{3π}{4}}{ω}$,k∈Z,
解得:0<ω2≤$\frac{π}{4}-2kπ$,且0<ω2≤2kπ+$\frac{3π}{4}$,k∈Z,
解得:$-\frac{3}{8}$<k<$\frac{1}{8}$,k∈Z,
∴可解得:k=0,
又圖象關(guān)于直線x=-ω對稱,
∴$sin(-{ω}^{2}-\frac{π}{4})$=±1,
∴ω2+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k=0,ω>0.
解得ω=$\frac{\sqrt{π}}{2}$.
故選:C.
點評 本題考查了三角函數(shù)的單調(diào)性對稱性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{6}-7}{18}$ | B. | $\frac{7-4\sqrt{6}}{18}$ | C. | $\frac{\sqrt{3}+\sqrt{2}}{6}$ | D. | $\frac{\sqrt{3}-\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com