分析 (1)連接AN交平面α 于Q,連接OQ、PQ,推導(dǎo)出BN∥OQ,PQ∥AM,由此能證明P為MN的中點(diǎn).
(2)推導(dǎo)出OQ=3,PQ=4,∠PQO=60°,或∠PQO=120°,由此能求出OP的長(zhǎng).
解答 證明:(1)連接AN交平面 α 于Q,連接OQ、PQ,
∵A∉b,∴A、b可確定平面β,
∴α∩β=OQ,由b∥α 得 BN∥OQ.
∵O為AB的中點(diǎn),∴Q為AN的中點(diǎn).
同理 PQ∥AM,故P為MN的中點(diǎn).
解:(2)由(1)得OQ∥BN,且OQ=$\frac{1}{2}$BN=3,
PQ∥AM,且PQ=$\frac{1}{2}$AM=4,
∵a,b所成的角為600,∴∠PQO=60°或∠PQO=120°,
當(dāng)∠PQO=60°時(shí),
OP=$\sqrt{O{Q}^{2}+P{Q}^{2}-2×OQ×PQ×cos∠PQO}$
=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$;
當(dāng)∠PQO=120°時(shí),
OP=$\sqrt{O{Q}^{2}+P{Q}^{2}-2×OQ×PQ×cos∠PQO}$
=$\sqrt{9+16+2×3×4×\frac{1}{2}}$=$\sqrt{37}$.
∴OP的長(zhǎng)為$\sqrt{13}$或$\sqrt{37}$.
點(diǎn)評(píng) 本題考查點(diǎn)為線段中點(diǎn)的證明,考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | MN∥AB | B. | MN⊥AC | C. | MN⊥CC1 | D. | MN∥平面ABCD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 該班總?cè)藬?shù)為50人 | B. | 步行人數(shù)為30人 | ||
C. | 騎車人數(shù)占總?cè)藬?shù)的20% | D. | 乘車人數(shù)是騎車人數(shù)的2.5倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com