【題目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值為A,若存在實(shí)數(shù)x1 , x2 , 使得對任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1﹣x2|的最小值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵f(x)=sin(2014x+ )+cos(2014x﹣ )= sin2014x+ cos2014x+ cos2014x+ sin2014x
= sin2014x+cos2014x
=2sin(2014x+ ),
∴A=f(x)max=2,周期T= = ,
又存在實(shí)數(shù)x1 , x2 , 對任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,
∴f(x2)=f(x)max=2,f(x1)=f(x)min=﹣2,
|x1﹣x2|的最小值為 T= ,又A=2,
∴A|x1﹣x2|的最小值為 .
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的三角函數(shù)的最值,需要了解函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣b)lnx+x2在區(qū)間[1,e]上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是( )
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 過點(diǎn) ,且與 的交于 , .
(1) 用 表示 , 的橫坐標(biāo);
(2)設(shè)以 為焦點(diǎn),過點(diǎn) , 且開口向左的拋物線的頂點(diǎn)坐標(biāo)為 ,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣alnx,其中a>0,x>0,e是自然對數(shù)的底數(shù). (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)= ,證明:0<g(x)<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命題:
①F(x)=f(x)﹣g(x)在 內(nèi)單調(diào)遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2 x﹣e.
其中真命題的個(gè)數(shù)為(請?zhí)钏姓_命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“”的否定是“”
B. “在上恒成立”“在上恒成立”
C. 命題“已知,若,則或”是真命題
D. 命題“若,則函數(shù)只有一個(gè)零點(diǎn)”的逆命題為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com