【題目】給出下列命題:(1)若(a2-1)+(a2+3a+2)i(a∈R)是純虛數(shù),則實數(shù)a=±1;(2)1+i2是虛數(shù);(3)在復平面中,實軸上的點均表示實數(shù),虛軸上的點均表示純虛數(shù).其中真命題的個數(shù)為(  )

A. 0 B. 1

C. 2 D. 3

【答案】A

【解析】

(1)若(a2-1)+(a2+3a+2)i(a∈R)是純虛數(shù),則a2-1=0且a2+3a+2≠0,解得a=1。

(2)1+i2=1-1=0是實數(shù)。

(3)除原點外虛軸上的點均表示純虛數(shù),原點對應的復數(shù)為0。

(1)若(a2-1)+(a2+3a+2)i(a∈R)是純虛數(shù),則a2-1=0且a2+3a+2≠0,解得a=1,所以錯誤;(2)1+i2=1-1=0是實數(shù),所以錯誤;(3)除原點外虛軸上的點均表示純虛數(shù),原點對應的復數(shù)為0,所以錯誤.故選A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣1=0},則下列式子表示正確的有( )
①1∈A②{﹣1}∈A③∈A④{﹣1,1}A.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某物體一天中的溫度T是時間t的函數(shù),已知T(t)=t3+at2+bt+c,其中溫度的單位是℃,時間的單位是小時,規(guī)定中午12:00相應的t=0,中午12:00以后相應的t取正數(shù),中午12:00以前相應的t取負數(shù)(例如早上8:00對應的t=﹣4,下午16:00相應的t=4),若測得該物體在中午12:00的溫度為60℃,在下午13:00的溫度為58℃,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度T關于時間t的函數(shù)關系式;
(2)該物體在上午10:00至下午14:00這段時間中(包括端點)何時溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是R上的任意函數(shù),則下列敘述正確的是( )
A.f(x)f(﹣x)是奇函數(shù)
B.f(x)|f(﹣x)|是奇函數(shù)
C.f(x)﹣f(﹣x)是偶函數(shù)
D.f(x)+f(﹣x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲一枚骰子,記事件A為“落地時向上的點數(shù)是奇數(shù)”,事件B為“落地時向上的點數(shù)是偶數(shù)”,事件C為“落地時向上的點數(shù)是3的倍數(shù)”,事件D為“落地時向上的點數(shù)是6或4”,則下列每對事件是互斥事件但不是對立事件的是( )
A.A與B
B.B與C
C.A與D
D.C與D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 經過平面外一點有且只有一平面與已知平面垂直

B. 經過平面外一點有且只有一條直線與已知平面平行

C. 經過平面外一點有且只有一條直線與已知直線垂直

D. 經過平面外一點有且只有一條直線與已知平面垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位實行職工值夜班制度,己知AB,CD,E5名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若A昨天值夜班,從今天起B,C至少連續(xù)4天不值夜班,D星期四值夜班,則今天是星期__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,經過橢圓的左頂點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知點為線段的中點, ,并且交橢圓于點.

①是否存在定點,對于任意的都有?若存在,求出點的坐標,若不存在,請說明理由;

②求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設甲、乙、丙三人進行圍棋比賽,每局兩人參加,沒有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為.比賽順序為:首先由甲和乙進行第一局的比賽,再由獲勝者與未參加比賽的選手進行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結束.

(1)求恰好進行了三局比賽,比賽就結束的概率;

(2)記從比賽開始到比賽結束所需比賽的局數(shù)為,求的概率分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案