復(fù)數(shù)
3-2i
2+3i
-
3+2i
2-3i
(其中i為虛數(shù)單位)的虛部是(  )
A、-2B、-1C、1D、2
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.
解答: 解:復(fù)數(shù)
3-2i
2+3i
-
3+2i
2-3i
=
(3-2i)(2-3i)-(3+2i)(2+3i)
(2+3i)(2-3i)
=-2i的虛部是-2.
故選;A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,記角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,若
AB
AC
<0,則下列結(jié)論中:
①△ABC是鈍角三角形;             ②a2>b2+c2;
③cosBcosC>sinBsinC;           ④sinB>cosC;
其中錯(cuò)誤結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,⊙O的直徑為AB,AD平分∠BAC,AD交⊙O于點(diǎn)D,BC∥DE,且DE交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若AB=10,AC=6求DF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以原點(diǎn)O為中心,焦點(diǎn)在x軸上的雙曲線C,有一條漸近線的傾斜角為60°,點(diǎn)F是該雙曲線的右焦點(diǎn).位于第一象限內(nèi)的點(diǎn)M在雙曲線C上,且點(diǎn)N是線段MF的中點(diǎn).若|
ON
|=|
NF
|+1,則雙曲線C的方程為(  )
A、x2-
y2
3
=1
B、x2-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、3x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(6,-4),B(4,8),求線段AB的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程Ax2+By2+Cxy+Dx+Ey+F=0表示圓,求:A、B、C、D、E、F應(yīng)滿足的條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo):f(x)=
2x
x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=(m-2)+(m+1)i為純虛數(shù),m∈R,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x3+2-x,則f(2)+g(2)=( 。
A、4B、-4C、2D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案