【題目】已知函數(shù),則下列判斷正確的是( )
A.為奇函數(shù)
B.對任意,,則有
C.對任意,則有
D.若函數(shù)有兩個不同的零點,則實數(shù)m的取值范圍是
【答案】CD
【解析】
根據(jù)函數(shù)的奇偶性以及單調(diào)性判斷AB選項;對進行分類討論,判斷C選項;對選項D,構(gòu)造函數(shù),將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,即可得出實數(shù)m的取值范圍.
對于A選項,當時,,則
所以函數(shù)不是奇函數(shù),故A錯誤;
對于B選項,的對稱軸為,的對稱軸為
所以函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,并且
所以在上單調(diào)遞增
即對任意,都有
則,故B錯誤;
對于C選項,當時,,則
則
當時,,則
當時,,則
則
即對任意,則有,故C正確;
對于D選項,當時,,則不是該函數(shù)的零點
當時,
令函數(shù),函數(shù)
由題意可知函數(shù)與函數(shù)的圖象有兩個不同的交點
因為時,,時,
所以
當時,設(shè),
因為,所以,即
設(shè),,即
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增
同理可證,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增
函數(shù)圖象如下圖所示
由圖可知,要使得函數(shù)與函數(shù)的圖象有兩個不同的交點
則實數(shù)m的取值范圍是,故D正確;
故選:CD
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域為R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對一切恒成立的實數(shù)k的取值范圍;
(3)若函數(shù)的圖象過點,是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某網(wǎng)站的程序員中隨機抽取名統(tǒng)計其年齡數(shù)據(jù)如下表:
年齡 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人數(shù) | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);
(2)若這名程序員中年齡不超過歲,且學歷是研究生及其以上有人,歲以上且學歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認為該網(wǎng)站程序員的學歷與年齡有關(guān).
年齡≤30 | 年齡>30 | |
學歷研究生及其以上 | ||
學歷本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P是拋物線C:上任意一點,過點P作直線PH⊥x軸,點H為垂足.點M是直線PH上一點,且在拋物線的內(nèi)部,直線l過點M交拋物線C于A、B兩點,且點M是線段AB的中點.
(1)證明:直線l平行于拋物線C在點P處切線;
(2)若|PM|=, 當點P在拋物線C上運動時,△PAB的面積如何變化?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知M,N是焦點為F的拋物線y2=2px(p>0)上兩個不同的點,線段MN的中點A的橫坐標為.
(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點B,求點B的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值是,的最小值是,且滿足.
(1)求橢圓的離心率;
(2)設(shè)線段的中點為,線段的垂直平分線與軸、軸分別交于,兩點,是坐標原點,記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x與x=1時都取得極值,求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com