三棱錐A-BCD每個面都是正三角形,點p是平面ABC內(nèi)任意一點,若p到點A的距離等于p到平面BCD的距離,則p的軌跡是
 
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:將點P到平面ABC距離與到點A的距離相等轉(zhuǎn)化成在面ABC中點P到A的距離與到定直線BC的距離比是一個常數(shù),依據(jù)圓錐曲線的第二定義判斷出其軌跡的形狀.
解答: 解:設(shè)二面角A-BC-D的平面角為θ,點P到平面BCD的距離為|PH|,點P到定直線CB的距離為d,則|PH|=dsinθ
∵點P到平面BCD的距離與點P到點A的距離相等
∴dsinθ=|PA|
|PA|
d
=sinθ
<1
即在平面ABC中,點P到定點A的距離與定直線BC的距離之比是一個小于1的常數(shù)sinθ,
由橢圓定義知P點軌跡為橢圓在面ABC內(nèi)的一部分.
故答案為:橢圓在面ABC內(nèi)的一部分.
點評:本題主要考查立體幾何中的軌跡問題,解題的關(guān)鍵是將點P到平面ABC距離與到點A的距離相等轉(zhuǎn)化成在面ABC中點P到A的距離與到定直線BC的距離比是一個常數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a>0且a≠1時,函數(shù)f(x)=ax和g(x)=ax+a的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x2<1,則-1<x<1”的逆否命題是(  )
A、若x2≥1,則x≥1且x≤-1
B、若-1<x<1,則x2<1
C、若x>1或x<-1,則x2>1
D、若x≥1或x≤-1,則x2≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一窗戶的上部是半圓,下部是矩形,如果窗戶面積為S,若使窗戶的周長最小,則圓的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四個數(shù)a1,a2,a3,a4,前三個數(shù)成等比,積為64;后三個數(shù)成等差,和為6;則a1=(  )
A、9B、8C、16D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)A為半徑為1圓周上一定點,在圓周上等可能的任取一點B,則弦長|AB|超過
2
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4cosθ,直線l的參數(shù)方程是
x=
3
2
t
y=2+
1
2
t
(t為參數(shù)).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若點M,N分別為曲線C和直線l上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項等差數(shù)列{an},a2,a5,a14恰好是等比數(shù)列{bn}的前三項,a2=3.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,k(Tn+
3
2
)≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案