如圖,設A為半徑為1圓周上一定點,在圓周上等可能的任取一點B,則弦長|AB|超過
2
的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:先找出滿足條件弦的長度超過
2
的圖形測度,再代入幾何概型計算公式求解.
解答: 解:根據(jù)題意可得,當弦的長度等于半徑
2
時,M,N為圓的直徑,
則弦長超過半徑
2
的點構成的區(qū)域是半圓,
則弦長超過半徑
2
的概率P=
1
2
;
故答案為:
1
2
點評:本題主要考查幾何槪型的概率計算,求出對應的測度是解決本題的關鍵.幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等的比值解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=
5
2
cos(
π
2
x)+log
1
2
x,則函數(shù)f(x)的零點有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C,若BC=2BF,且AF=4,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sin(2ωx+
π
4
)-1相鄰兩對稱中心距離
π
21

(1)求ω的值;
(2)當x∈R,求f(x)值域,并求f(x)最大值時對應x的取值集合;
(3)當x∈[0,
π
2
]時,求f(x)值域;
(4)解不等式f(x)≤
3
-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐A-BCD每個面都是正三角形,點p是平面ABC內任意一點,若p到點A的距離等于p到平面BCD的距離,則p的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)給出的空間幾何體的三視圖,用斜二測畫法畫出它的直觀圖.(寫出畫法,并保留作圖痕跡)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
x
ex
-a與x軸有兩個不同的交點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊△ABC的中線AF與中位線DE相交于點G,將△AED沿DE折起到△A′ED的位置.
(1)證明:BD∥平面A′EF;
(2)當平面A′ED⊥平面BCED時,證明:直線A′E與 BD不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lgsin(
π
3
-2x)的單調遞減區(qū)間是(  ),其中k∈Z.
A、(kπ+
12
,kπ+
11π
12
B、(kπ+
12
,kπ+
3
C、(kπ-
π
12
,kπ+
π
6
D、(kπ+
π
6
,kπ+
12

查看答案和解析>>

同步練習冊答案