18.下列四個結(jié)論中假命題的個數(shù)是(  )
①垂直于同一直線的兩條直線互相平行;
②平行于同一直線的兩直線平行;
③若直線a,b,c滿足a∥b,b⊥c,則a⊥c;
④若直線a,b是異面直線,則與a,b都相交的兩條直線是異面直線.
A.1B.2C.3D.4

分析 在①中,垂直于同一直線的兩條直線相交、平行或異面;在②中,由平行公理得平行于同一直線的兩直線平行;在③中,由線面垂直的性質(zhì)定理得a⊥c;在④中,若直線a,b是異面直線,則與a,b都相交的兩條直線不存在.

解答 解:在①中,垂直于同一直線的兩條直線相交、平行或異面,故①錯誤;
在②中,由平行公理得平行于同一直線的兩直線平行,故②正確;
在③中,若直線a,b,c滿足a∥b,b⊥c,則由線面垂直的性質(zhì)定理得a⊥c,故③正確;
在④中,若直線a,b是異面直線,則與a,b都相交的兩條直線不存在,故④錯誤.
故選:B.

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓x2+y2=50與圓x2+y2-12x-6y+40=0的位置關(guān)系為( 。
A.相離B.相切C.相交D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=x2-$\frac{a}{x}$(x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若f(x)在(-∞,-2]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$cos(\frac{π}{2}+φ)=\frac{2}{3}$,且$|φ|<\frac{π}{2}$,則tanφ=( 。
A.$-\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項a1=2,${a_n}=\frac{{3-{a_{n-1}}}}{2}(n≥2)$,求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若異面直線a、b所成的角為60°,則過空間一點P且與a、b所成的角都為60°的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),且在公共定義域{x|x∈R且x≠±1}上滿足f(x)+g(x)=$\frac{1}{x-1}$.
(1)求f(x)和g(x)的解析式;
(2)設(shè)h(x)=f(x)-g(x),求h($\frac{1}{x}$);
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h($\frac{1}{2}$)+h($\frac{1}{3}$)+h($\frac{1}{4}$)+…+h($\frac{1}{2016}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足an+1=3an,且a2+a4+a9=9,則log3(a5+a7+a9)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,B(-3,0),C(3,0),直線AB,AC的斜率之積$\frac{4}{9}$,求頂點A的軌跡.

查看答案和解析>>

同步練習(xí)冊答案