分析 函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$,根據(jù)平面向量數(shù)量積運(yùn)算求出f(x),化簡(jiǎn),找出與cos2x的關(guān)系即可求解.
解答 解:由題意:函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$,
∴$f(x)=\sqrt{3}sinxcosx-{cos^2}x+\frac{1}{2}$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$,
當(dāng)x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,即$sin(2x-\frac{π}{6})$=$\frac{\sqrt{3}}{3}$
∵$x∈[{0,\frac{π}{4}}]$
∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{π}{3}$
$又∵sin(2x-\frac{π}{6})>0$
∴$cos({2x-\frac{π}{6}})=\frac{{\sqrt{6}}}{3}$
∴$cos2x=cos[{({2x-\frac{π}{6}})+\frac{π}{6}}]$=$cos({2x-\frac{π}{6}})×\frac{{\sqrt{3}}}{2}-sin({2x-\frac{π}{6}})×\frac{1}{2}$
=$\frac{{\sqrt{6}}}{3}×\frac{{\sqrt{3}}}{2}-\frac{1}{2}×\frac{{\sqrt{3}}}{3}=\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{3}}}{6}$.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{14}}}{2}$ | B. | $\sqrt{14}$ | C. | $\frac{{\sqrt{13}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | 3$\sqrt{2}$+2 | D. | 2$\sqrt{2}$+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{9}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com