10.集合M={y|y=-x2,x∈R},N={x|x2+y2=2,x∈R},則M∩N=( 。
A.{(-1,-1),(1,-1)}B.{-1}C.[-1,0]D.[-$\sqrt{2}$,0]

分析 由二次函數(shù)的值域求出集合M,由條件和圓的性質(zhì)求出集合N,由交集的運(yùn)算求出M∩N.

解答 解:由y=-x2(x∈R)得y≤0,則集合M={y|y=-x2,x∈R}=(-∞,0],
由x2+y2=2(x∈R)得$-\sqrt{2}≤x≤\sqrt{2}$,則N={x|x2+y2=2,x∈R}=[$-\sqrt{2}$,$\sqrt{2}$],
所以M∩N=[$-\sqrt{2}$,0],
故選D.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,二次函數(shù)的值域,以及圓的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.關(guān)于下面等高條形圖說(shuō)法正確的有( 。
A.在被調(diào)查的 x 1中,y 1占70%B.在被調(diào)查的 x 2中,y 2占20%
C.1與 y 1有關(guān)D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)滿足f(1+x)=-f(1-x),f(x)=f(6-x),當(dāng)x∈[1,3]時(shí),$f(x)=\frac{1}{2}(x-1)$.
(1)在網(wǎng)格中畫出函數(shù)f(x)在[-5,11]上的圖象;
(2)若直線y=k(x+3)與函數(shù)f(x)的圖象的交點(diǎn)個(gè)數(shù)為5,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E
求證:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求過A(1,0)與B(0,1)兩點(diǎn),且在x軸上截得的弦長(zhǎng)等于6的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知雙曲線的中心在原點(diǎn),兩個(gè)焦點(diǎn)F1,F(xiàn)2分別為$(-\sqrt{5},0)和(\sqrt{5},0)$,點(diǎn)P在雙曲線上,PF1⊥PF2,且△PF1F2的面積為1,則雙曲線的方程為(  )
A.$\frac{x^2}{2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知i是復(fù)數(shù)的虛數(shù)單位,若復(fù)數(shù)z(1+i)=|2i|,則復(fù)數(shù)z=( 。
A.1-iB.-1+iC.1+iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)$f(x)=\sqrt{x(9-x)}$的定義域是{x|0≤x≤9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p:“?x∈R,x2-2x+2>0”,則¬p是( 。
A.?x∈R,x2-2x+2≤0B.?x0∈R,$x_0^2-2{x_0}+2>0$
C.?x0∈R,$x_0^2-2{x_0}+2<0$D.?x0∈R,$x_0^2-2{x_0}+2≤0$

查看答案和解析>>

同步練習(xí)冊(cè)答案