直線:y=kx+1(k≠0),橢圓E:,若直線被橢圓E所截弦長為d,則下列直線中被橢圓E所截弦長不是d的直線是(  )
A   kx+y+1=0     B kx-y-1=0      C kx+y-1=0     D kx+y=0
D

解:直線l:y=kx+1(k≠0)恒過點(0,1)
對于A,直線過點(0,-1),根據(jù)橢圓的對稱性,可知直線被橢圓E所截弦長可以為d,故不能選A.
對于B,直線過點(0,-1),根據(jù)橢圓的對稱性,可知直線被橢圓E所截弦長可以為d,故不能選B.
對于C,直線過點(0,1),當(dāng)直線與直線l重合時,直線被橢圓E所截弦長可以為d,故不能選C.
對于D,直線過點(0,0),故直線被橢圓E所截弦長不可以為d,故選D.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:的左、右焦點為,其上頂點為.已知是邊長為的正三角形.
(1)求橢圓C的方程;  
(2) 過點任作一直線交橢圓C于
點,記若在線段上取一點使得,試判斷當(dāng)直線運動時,點是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P是橢圓上的點,F(xiàn)1、F2是兩個焦點,則|PF1|·|PF2|的最大值與最小值之差是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知、是橢圓的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足為坐標(biāo)原點),,若橢圓的離心率等于
(1)求直線AB的方程;  (2)若的面積等于,求橢圓的方程;
(3)在(2)的條件下,橢圓上是否存在點M使得的面積等于?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的頂點A、B在橢圓,點在直線上,且
(1)當(dāng)AB邊通過坐標(biāo)原點O時,求的面積;
(2)當(dāng),且斜邊AC的長最大時,
求AB所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 9分) 如圖,過橢圓的左焦點F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點Mx軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”.求橢圓的“左特征點”M的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P為橢圓=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標(biāo), 若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 在直角坐標(biāo)系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點.⑴求軌跡的方程;⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩個正數(shù)ab的等差中項是,一個等比中項是,且則橢圓 的離心率e等于(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案