【題目】古希臘數(shù)學(xué)家阿波羅尼斯在其巨著《圓錐曲線論》中提出“在同一平面上給出三點(diǎn),若其中一點(diǎn)到另外兩點(diǎn)的距離之比是一個(gè)大于零且不等于1的常數(shù),則該點(diǎn)軌跡是一個(gè)圓”現(xiàn)在,某電信公司要在甲、乙、丙三地搭建三座5G信號塔來構(gòu)建一個(gè)三角形信號覆蓋區(qū)域,以實(shí)現(xiàn)5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個(gè)三角形信號覆蓋區(qū)域的最大面積(單位:平方公里)是( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當(dāng)年產(chǎn)量不足60臺時(shí),萬元;當(dāng)年產(chǎn)量不小于60臺時(shí),萬元若每臺設(shè)備售價(jià)為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
求年利潤萬元關(guān)于年產(chǎn)量臺的函數(shù)關(guān)系式;
當(dāng)年產(chǎn)量為多少臺時(shí),該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.
(Ⅰ)理論上,小球落入4號容器的概率是多少?
(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且
為等邊三角形,平面平面;點(diǎn)分別為的中點(diǎn).
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)滿足:對于任意實(shí)數(shù)x、y,總有恒成立,我們稱為“類余弦型”函數(shù).
已知為“類余弦型”函數(shù),且,求和的值;
在的條件下,定義數(shù)列2,3,求的值.
若為“類余弦型”函數(shù),且對于任意非零實(shí)數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù),滿足,判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年的12月4日為我國“法制宣傳日”.天津市某高中團(tuán)委在2019年12月4日開展了以“學(xué)法、遵法、守法”為主題的學(xué)習(xí)活動.已知該學(xué)校高一、高二、高三的學(xué)生人數(shù)分別是480人、360人、360人.為檢查該學(xué)校組織學(xué)生學(xué)習(xí)的效果,現(xiàn)采用分層抽樣的方法從該校全體學(xué)生中選取10名學(xué)生進(jìn)行問卷測試.具體要求:每位被選中的學(xué)生要從10個(gè)有關(guān)法律、法規(guī)的問題中隨機(jī)抽出4個(gè)問題進(jìn)行作答,所抽取的4個(gè)問題全部答對的學(xué)生將在全校給予表彰.
⑴求各個(gè)年級應(yīng)選取的學(xué)生人數(shù);
⑵若從被選取的10名學(xué)生中任選3人,求這3名學(xué)生分別來自三個(gè)年級的概率;
⑶若被選取的10人中的某學(xué)生能答對10道題中的7道題,另外3道題回答不對,記表示該名學(xué)生答對問題的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓以原點(diǎn)為中心,左焦點(diǎn)的坐標(biāo)是,長軸長是短軸長的倍,直線與橢圓交于點(diǎn)與,且、都在軸上方,滿足;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)對于動直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個(gè)點(diǎn).
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時(shí),求直線AD與直線BC的交點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);
(3)若函數(shù)的極大值等于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com