7.已知$\overrightarrow a,\overrightarrow b$均為單位向量,并且它們的夾角為120°,那么$|{\overrightarrow a-2\overrightarrow b}|$等于( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

分析 運(yùn)用向量數(shù)量積的定義可得$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos120°=1×1×(-$\frac{1}{2}$)=-$\frac{1}{2}$,再由向量的平方即為模的平方,化簡(jiǎn)整理計(jì)算即可得到所求值

解答 解:∵$\overrightarrow a,\overrightarrow b$均為單位向量,并且它們的夾角為120°,
∴|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos120°=1×1×(-$\frac{1}{2}$)=-$\frac{1}{2}$,
∴$|{\overrightarrow a-2\overrightarrow b}|$2=|$\overrightarrow{a}$|2+4|$\overrightarrow$|2-4$\overrightarrow{a}•\overrightarrow$=1+4+2=7,
∴$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$,
故選:B.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖.若該幾何體的頂點(diǎn)都在球O的表面上,則球O的體積是( 。
A.$\frac{\sqrt{61}}{6}$πB.$\frac{\sqrt{61}}{24}$πC.$\frac{61\sqrt{61}}{2}$πD.$\frac{61\sqrt{61}}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在三棱錐S-ABC中,SO⊥平面ABC,側(cè)面SAB與SAC均為等邊三角形,∠BAC=90°,O為BC的中點(diǎn),求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某地區(qū)最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份x20102011201220132014
需求量y萬(wàn)噸236246257276286
(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的線性回歸方程$\hat y=\hat bx+\hat a$.
(2)利用(1)中所求出的線性回歸方程預(yù)測(cè)該地區(qū)2016年的糧食需求量.
(附:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}\bar-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}(n∈{N^*})$.
(1)計(jì)算a1,a2,a3的值,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.給出下列命題:
①函數(shù)$y=2{cos^2}(\frac{1}{3}x+\frac{π}{4})-1$是奇函數(shù);
②存在實(shí)數(shù)α,使得$inα+cosα=\frac{3}{2}$;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5π}{4})$的一條對(duì)稱軸方程;
⑤函數(shù)$y=sin(2x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$成中心對(duì)稱圖形.
其中命題正確的是①③④(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)A(2,3),點(diǎn)B(6,-3),點(diǎn)P在直線3x-4y+3=0上,若滿足等式$\overrightarrow{AP}$•$\overrightarrow{BP}$+2λ=0的點(diǎn)P有兩個(gè),則實(shí)數(shù)λ的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.命題:等腰三角形兩底角相等的逆命題是:若一個(gè)三角形有兩個(gè)角相等,則這個(gè)三角形為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)D=$\sqrt{{{({x-a})}^2}+{{({lnx-\frac{a^2}{4}})}^2}}+\frac{a^2}{4}$+1.(a∈R),則D的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案