【題目】已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項公式;

(2)求數(shù)列{an·bn}的前n項和Tn.

【答案】(1)an=3n-1(n∈N*),bn=2n+1(n∈N*).

(2)Tn=n·3n.

【解析】試題分析:(1)先根據(jù)和項與通項關系得項的遞推關系式:an+1=3an,再根據(jù)等比數(shù)列定義以及通項公式求數(shù)列{an}的通項公式;利用待定系數(shù)法求等差數(shù)列{bn}中首項與公差,再根據(jù)等差數(shù)列通項公式得{bn}的通項公式;(2)利用錯位相減法求數(shù)列{an·bn}的前n項和Tn. 利用錯位相減法求和時,注意相減時項的符號變化,中間部分利用等比數(shù)列求和時注意項數(shù),最后要除以

試題解析:解 (1)∵a1=1,an+1=2Sn+1(n∈N*),

∴an=2Sn-1+1(n∈N*,n>1),

∴an+1-an=2(Sn-Sn-1),

即an+1-an=2an,∴an+1=3an(n∈N*,n>1).

而a2=2a1+1=3,∴a2=3a1.

∴數(shù)列{an}是以1為首項,3為公比的等比數(shù)列,

∴an=3n-1(n∈N*).

∴a1=1,a2=3,a3=9,

在等差數(shù)列{bn}中,∵b1+b2+b3=15,∴b2=5.

又∵a1+b1、a2+b2、a3+b3成等比數(shù)列,設等差數(shù)列{bn}的公差為d,則有(a1+b1)(a3+b3)=(a2+b2)2.

∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,

∵bn>0(n∈N*),∴舍去d=-10,取d=2,

∴b1=3,∴bn=2n+1(n∈N*).

(2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)·3n-2+(2n+1)3n-1,①

∴3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②

∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×-(2n+1)3n=3n-(2n+1)3n

=-2n·3n.∴Tn=n·3n.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且在軸上截得的弦長為4,記動圓圓心的軌跡為曲線C

(Ⅰ)求直線與曲線C圍成的區(qū)域面積;

(Ⅱ)點在直線上,點,過點作曲線C的切線、,切點分別為、,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸非負半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的極坐標方程及直線的直角坐標方程;

(2)設直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC三個頂點的直角坐標分別為A(3,4)、B(0,0)、C(c,0).
(1)若 ,求c的值;
(2)若c=5,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作拋物線的兩條切線, 切點分別為, .

(1) 證明: 為定值;

(2) 記△的外接圓的圓心為點, 是拋物線的焦點,任意實數(shù), 試判斷以為直徑的圓是否恒過點? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】靜寧縣是甘肅蘋果栽培第一大縣,中國著名優(yōu)質(zhì)蘋果基地和重要蘋果出口基地.靜寧縣海拔高、光照充足、晝夜溫差大、環(huán)境無污染,適合種植蘋果.“靜寧蘋果”以色澤鮮艷、質(zhì)細汁多,酸甜適度,口感脆甜、貨架期長、極耐儲藏和長途運輸而著名.為檢測一批靜寧蘋果,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100)

頻數(shù)(個)

5

10

20

15


(1)根據(jù)頻數(shù)分布表計算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個,其中重量在[80,85)的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,求重量在[80,85)和[95,100)中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對某一商品搞活動,已知該商品每一個的進價為3元,銷售價為8元,每天售出的第20個及之后的半價出售.該商場統(tǒng)計了近10天的這種商品銷量,如圖所示:設為每天商品的銷量,為該商場每天銷售這種商品的的利潤.從日利潤不少于96元的幾天里任選2天,則選出的這2天日利潤都是97元的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全運會將在2017年8月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經(jīng)理進行為期半月的培訓,培訓結(jié)束,組織了一次培訓結(jié)業(yè)測試,10人考試成績?nèi)缦拢M分為100分):

75 84 65 90 88 95 78 85 98 82

()以成績的十位為莖個位為葉作出本次結(jié)業(yè)成績的莖葉圖,并計算平均成績與成績中位數(shù) ;

()從本次結(jié)業(yè)成績在80分以上的人員中選3人,這3人中成績在90分(含90分)以上的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,設PD=x,∠BPC=θ,記函數(shù)f(x)=tanθ,則下列表述正確的是(

A.f(x)是關于x的增函數(shù)
B.f(x)是關于x的減函數(shù)
C.f(x)關于x先遞增后遞減
D.關于x先遞減后遞增

查看答案和解析>>

同步練習冊答案