設(shè)過點(-2,a)和點(a,4)的直線的斜率等于1,則a的值等于


  1. A.
    1
  2. B.
    4
  3. C.
    1或3
  4. D.
    1或4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;
(2)過點B作直線雙曲線C的右支于M,N兩點,試確定λ的范圍,使
OM
ON
=0
,其中點O為坐標(biāo)原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上,對稱軸為坐標(biāo)軸的橢圓的離心率為
1
2
,且以該橢圓上的點和橢圓的兩焦點F1,F(xiàn)2為頂點的三角形的周長為6,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點N(1,0)斜率為k直線l與橢圓相交于A、B兩點,若-
18
7
NA
NB
≤-
12
5
,求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xoy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設(shè)過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F(xiàn)2關(guān)于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案