分析 首先,根據(jù)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t為參數(shù)),化簡(jiǎn)為普通方程為:x+2y=4,然后,設(shè)P(2cosθ,sinθ),根據(jù)點(diǎn)到直線的距離求解即可.
解答 解:根據(jù)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t為參數(shù)),得其普通方程為:x+2y=4,
設(shè)P(2cosθ,sinθ),
∴P到l的距離為d=$\frac{|2cosθ+2sinθ-4|}{\sqrt{5}}$=$\frac{|2\sqrt{2}sin(θ+\frac{π}{4})-4|}{\sqrt{5}}$≥$\frac{4-2\sqrt{2}}{\sqrt{5}}$,
當(dāng)且僅當(dāng)sin(θ+$\frac{π}{4}$)=1,即θ=2kπ+$\frac{π}{4}$時(shí)等號(hào)成立.
此時(shí),sinθ=cosθ=$\frac{\sqrt{2}}{2}$,
∴P($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
點(diǎn)評(píng) 本題重點(diǎn)考查了參數(shù)方程和普通的互化、點(diǎn)到直線的距離公式等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,c=0,則ac>bc | B. | 若ac2>bc2,則a>b | ||
C. | 若a>b,則$\frac{1}{a}$>$\frac{1}$ | D. | 若a>b,則ac2>bc2 | ||
E. | 若a>b,則ac2>bc2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{2}$) | B. | (-$\frac{1}{2}$,2)∪(2,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$) | B. | $\frac{5}{14}$ | C. | ($\frac{5}{12}$,$\frac{1}{2}$) | D. | ($\frac{5}{14}$,$\frac{5}{12}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com