已知f(x)=ax3,且f(6)=-216.
(1)求實數(shù)a的值;
(2)分解因式f(m)-f(n);
(3)證明f(x)在R上是減函數(shù).
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)把自變量的值代入f(6)中,求出a的值;
(2)按照立方差公式分解f(m)-f(n)即可;
(3)方法一:用導(dǎo)數(shù)來判斷f(x)的單調(diào)性,
方法二,用單調(diào)性定義來證明.
解答: 解:(1)∵f(x)=ax3,且f(6)=-216,
∴a×63=-216,
∴a=-1;
(2)∵a=-1,∴f(x)=-x3,
∴f(m)-f(n)=-m3-(-n3
=n3-m3
=(n-m)(n2+nm+m2);
(3)證明:【方法一】
∵f(x)=-x3,
∴f′(x)=-x2≤0,
∴f(x)在R上是減函數(shù).
【方法二】用單調(diào)性定義證明:
任取x1、x2∈R,且x1<x2,
則f(x1)-f(x2)=(x2-x1)(x12+x1x2+x22
=(x2-x1)[(x1+
x2
2
)
2
+
3x22
4
];
∵x1<x2,∴x2-x1>0,
∴f(x1)>f(x2),
∴f(x)在R上是減函數(shù).
點評:本題考查了函數(shù)的單調(diào)性的判斷以及求函數(shù)值與利用立方差公式分解因式的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
OZ1
、
OZ2
分別對應(yīng)復(fù)數(shù)z1、z2,若
OZ1
OZ2
,則
z2
z1
是( 。
A、非負(fù)數(shù)B、純虛數(shù)
C、正實數(shù)D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3-
1
2
ax2
+2x,討論f(x)的單調(diào)性..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
a
x+
1
2
+ln(x+
1
2
)-1在x∈[0,e]上有兩個零點.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=ex+x2
2
3
x-
3
2
),f(x)是g(x)的導(dǎo)函數(shù).
(1)判斷函數(shù)f(x)在區(qū)間[0,1]上極值點的個數(shù);
(2)當(dāng)x≥
1
2
時,若關(guān)于x的不等式f(x)≥
5
2
x2+(a-3)x+1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)對于任意x、y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,當(dāng)x>0時,f(x)<0.(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)在R上的單調(diào)性;
(3)當(dāng)x∈[-2014,2014],求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列各條件寫出直線的方程,并且化成一般式:
(1)斜率是-
1
2
,經(jīng)過點A(8,-2);
(2)經(jīng)過點B(4,2),平行于x軸;
(3)在x軸和y軸上的截距分別是
3
2
,-3;
(4)經(jīng)過兩點P1(3,-2),P2(5,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)在[0,+∞)上為單調(diào)減函數(shù),且f(1-m)>f(2m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,甲、乙兩塔相距120m,在甲塔點A測得乙塔頂?shù)难鼋菫棣,在乙塔點C測得甲塔塔頂?shù)难鼋菫?α,在兩塔間正中一點M測得兩塔塔頂?shù)难鼋腔ビ啵蠹、乙兩塔的高度?/div>

查看答案和解析>>

同步練習(xí)冊答案