要制作一個由同底圓錐和圓柱組成的儲油罐(如圖),設(shè)計要求:圓錐和圓柱的總高度和圓柱底面半徑相等,都為米.市場上,圓柱側(cè)面用料單價為每平方米元,圓錐側(cè)面用料單價分別是圓柱側(cè)面用料單價和圓柱底面用料單價的4倍和2倍.設(shè)圓錐母線和底面所成角為(弧度),總費用為(元).
(1)寫出的取值范圍;(2)將表示成的函數(shù)關(guān)系式;
(3)當(dāng)為何值時,總費用最小?
(1) (2)同解析(3)當(dāng)時,費用最小. 
設(shè)圓錐的高為米,母線長為米,圓柱的高為米;圓柱的側(cè)面用料單價為每平方米2元,圓錐的側(cè)面用料單價為每平方米4元.
(1)    
(2)圓錐的側(cè)面用料費用為,圓柱的側(cè)面費用為,圓柱的地面費用為

==, = =
(3)設(shè),其中..則, 
當(dāng)時,
當(dāng)時,當(dāng)時,                                                  
則當(dāng)時,取得最小值,      
則當(dāng)時,費用最小. 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率.直線:與橢圓C相交于兩點, 且
(1)求橢圓C的方程
(2)點P(,0),A、B為橢圓C上的動點,當(dāng)時,求證:直線AB恒過一個定點.并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的一個交點,軸,若直線是雙曲線的一條漸近線,則直線的傾斜角所在的區(qū)間可能為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線的焦點軸上,拋物線上一點到準線的距離是,過點的直線與拋物線交于兩點,過兩點分別作拋物線的切線,這兩條切線的交點為
(Ⅰ)求拋物線的標(biāo)準方程;
(Ⅱ)求的值;
(Ⅲ)求證:的等比中項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點,B、C在軸上,且
(1)求外心的軌跡的方程;
(2)若P、Q為軌跡S上兩點,求實數(shù)范圍,使,且。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的兩個頂點三等分焦距,則該雙曲線的漸近線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個命題:
①動點M到兩定點A、B的距離之比為常數(shù),則動點M的軌跡是圓;
②橢圓的離心率為
③雙曲線的焦點到漸近線的距離是;
④已知拋物線上兩點, 為原點),則.
其中的真命題是_____________.(把你認為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們可以運用下面的原理解決一些相關(guān)圖形的面積問題:如果與一固定直線平行的直線被甲、乙兩個封閉圖形所截得線段的比為定值,那么甲的面積是乙的面積的倍,你可以從給出的簡單圖形①(甲:大矩形、乙:小矩形)、②(甲:大直角三角形乙:小直角三角形)中體會這個原理,現(xiàn)在圖③中的曲線分別是,運用上面的原理,圖③中橢圓的面積為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},則Cu( MN)=(  )
A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}

查看答案和解析>>

同步練習(xí)冊答案