已知全集U={x|0≤x<6,x∈Z},集合A={1,3,5},B={1,4},則∁UA∪∁UB等于( 。
A、{1,3,4,5}
B、{0,2}
C、{0,2,3,4,5}
D、{1}
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)補集的定義求出(CUA),(CUB),最后求出(CUA)∪(CUB).
解答: 解:∵全集U={x|0≤x<6,x∈Z},
∴U={0.1,2,3,4,5}
∵集合A={1,3,5},B={1,4},
∴∁UA={0,2,4},CUB={0,2,3,5},
∴∁UA∪∁UB={0,2,3,4,5}
故選:C
點評:本題考查交并補集的混合運算,通過已知的集合的全集,按照補集的運算法則分別求解,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1所示,以點M(-1,0)為圓心的圓與y軸,x軸分別交于點A,B,C,D,直線y=-
3
3
x-
5
3
3
與⊙M相切于點H,交x軸于點E,交y軸于點F.
(1)請直接寫出OE,⊙M的半徑r,CH的長;
(2)如圖2所示,弦HQ交x軸于點P,且DP:PH=3:2,求cos∠QHC的值;
(3)如圖3所示,點K為線段EC上一動點(不與E,C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN•MK=a,如果存在,請求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,A(1,-2,-1),B(0,-3,1),C(2,-2,1),若向量
n
與平面ABC垂直,且|
n
|=
21
,則
n
的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2xcosφ+cos2xsinφ(x∈R,0<φ<π),f(
π
4
)=
3
2

(1)求f(x)的解析式;
(2)若f(
α
2
-
π
3
)=
5
13
,α∈(
π
2
,π),求sin(α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式ax2+bx+c<0的解集為(-∞,m)∪(n,+∞),其中m<0<n,則不等式cx2+bx+a>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α(0≤α≤2π)的終邊過點P(sin
3
5
π
,cos
3
5
π
),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),當x>1時,f(x)>0,且f(x•y)=f(x)+f(y)
(1)求f(1);
(2)證明f(x)在定義域上是增函數(shù);
(3)解不等式f[x(x-
1
2
)]<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=e-2x和y=e-x的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論a為何實數(shù),直線(a-3)x+2ay+6=0恒過定點
 

查看答案和解析>>

同步練習(xí)冊答案