14.若復(fù)數(shù)z滿足z•i=2+3i,則在復(fù)平面內(nèi)z對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算求出z,得到z的坐標(biāo)得答案.

解答 解:由z•i=2+3i,得$z=\frac{2+3i}{i}=\frac{(2+3i)(-i)}{-{i}^{2}}=3-2i$,
∴在復(fù)平面內(nèi)z對應(yīng)的點的坐標(biāo)為(3,-2),位于第四象限.
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)z1滿足|z1|=1,又z2=2i,則|z1+z2|的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在區(qū)間[0,1]上任取兩個數(shù),則這兩個數(shù)之和小于$\frac{8}{5}$的概率是( 。
A.$\frac{2}{5}$B.$\frac{16}{25}$C.$\frac{17}{25}$D.$\frac{23}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面面積恒相等,則體積相等.設(shè)A,B為兩個同高的幾何體,p:A,B的體積相等,q:A,B在等高處的截面面積恒相等,根據(jù)祖暅原理可知,p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在(0,+∞)上的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log5x]=6,則函數(shù)f(x)的圖象在x=$\frac{1}{1n5}$處的切線的斜率為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三角形ABC的角A.B.C的對邊分別為a.b.c.已知10acosB=3bcosA,$cosA=\frac{{5\sqrt{26}}}{26}$,則C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線y=2x-1與直線y=kx+1平行,則k的值是( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.a(chǎn),b∈R,求證:a6+b6≥a4b2+a2b4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,若$2{a_{n+1}}-{a_n}=\frac{n-2}{{n({n+1})({n+2})}}$,${b_n}={a_n}-\frac{1}{{n({n+1})}}$,
(1)求證:{bn}為等比數(shù)列,并求出{an}的通項公式;
(2)若Cn=nbn,且其前n項和為Tn,求證:Tn<2.

查看答案和解析>>

同步練習(xí)冊答案