直線l過(guò)點(diǎn)P(6,4)且與x軸正半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,O為坐標(biāo)原點(diǎn).若M為線段AB上一點(diǎn),且直線OM的斜率為4,當(dāng)△OAM的面積最小時(shí),求M點(diǎn)的坐標(biāo).
考點(diǎn):直線的截距式方程
專題:直線與圓
分析:由題意設(shè)出M的坐標(biāo)(a,4a),和P聯(lián)立得到直線AB的方程,求出直線在x軸上的截距,直接把△AOM的面積用含a的代數(shù)式表示,然后利用配方法求最值,同時(shí)求得M的坐標(biāo).
解答: 解:∵直線OM的斜率為4,設(shè)M(a,4a),
則PM方程:
y-4a
x-a
=
y-4
x-6
,令y=0,求得x=
5a
a-1
,
∴△AOM面積為
1
2
•4a•
5a
a-1
=
10a2
a-1
=
10
-
1
a2
+
1
a
=
10
-(
1
a
-
1
2
)2+
1
4

∴當(dāng)a=2時(shí),面積最小為40,此時(shí)M坐標(biāo)為:(2,8).
點(diǎn)評(píng):本題考查了直線的兩點(diǎn)式方程,考查了直線截距的求法,訓(xùn)練了利用配方法求函數(shù)的最值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由部分實(shí)數(shù)構(gòu)成的集合A滿足:①任意兩個(gè)元素之和在A中;②任意兩個(gè)元素之積也在A中;③任意一個(gè)元素的n次方仍在A中(n屬于正整數(shù)),則符合條件的集合有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列算法語(yǔ)句,當(dāng)輸入x為60時(shí),輸出y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ln|x|與g(x)=sin(x+ψ)(ω>0)有兩個(gè)公共點(diǎn),則在下列函數(shù)中滿足條件的周期最大的g(x)等于( 。
A、sin(2πx-
π
2
B、sin(
πx
2
-
π
2
C、sin(πx-
π
2
D、sin(πx+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)系中正確的個(gè)數(shù)為( 。
①0∈{0};②∅?{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺(tái)母線的長(zhǎng);
(2)求該圓臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,求sin2α+2sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
1
2
,且tanα<0,求sinα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)對(duì)任意的實(shí)數(shù)x均存在f(a)≤f(x)≤f(0),且|a|的最小值為
π
2
,則函數(shù)f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案