如圖,AE是的⊙O切線,A是切點,AD⊥OE于點D,割線EC交⊙O于B,C兩點.
(1)證明:O,D,B,C四點共線;
(2)設∠DBC=50°,∠ODC=30°,求∠OEC的大小.
考點:弦切角,圓內(nèi)接多邊形的性質(zhì)與判定
專題:選作題,立體幾何
分析:(1)連結OA,則OA⊥EA.由已知條件利用射影定理和切割線定理推導出
ED
BD
=
EC
EO
,由此能夠證明O,D,B,C四點共圓.
(2)連結OB.∠OEC+∠OCB+∠COE=180°,能求出∠OEC的大。
解答: (1)證明:連結OA,則OA⊥EA.
由射影定理得EA2=ED•EO.
由切割線定理得EA2=EB•EC,
∴ED•EO=EB•EC,即
ED
BD
=
EC
EO
,
又∠OEC=∠OEC,∴△BDE∽△OCE,
∴∠EDB=∠OCE.
∴O,D,B,C四點共圓.…(6分)
(2)解:連結OB.因為∠OEC+∠OCB+∠COE=180°,
結合(1)得:∠OEC=180°-∠OCB-∠COE
=180°-∠OBC-∠DBE
=180°-∠OBC-(180°-∠DBC)
=∠DBC-∠ODC=20°.
∴∠OEC的大小為20°.…(10分)
點評:本題考查四點共圓的證明,考查角的大小的求法,是中檔題,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

敘述隨機事件的頻率與概率的關系時有如下說法:
①頻率就是概率;
②頻率是客觀存在的,與實驗次數(shù)無關;
③頻率是隨機的,在試驗前不能確定;
④隨著實驗次數(shù)的增加,頻率一般會越來越接近概率.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)三視圖,制作相應的實物模型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)fn(x)=axn+bx+c(a,b,c∈R),
(Ⅰ)若f1(x)=3x+1,f2(x)為偶函數(shù),求a,b,c的值;
(Ⅱ)若對任意實數(shù)x,不等式2x≤f2(x)≤
1
2
(x+1)2
恒成立,求f2(-1)的取值范圍;
(Ⅲ)當a=1時,對任意x1,x2∈[-1,1],恒有|f2(x1)-f2(x2)|≤4,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x2-3)=loga
x2
6-x2
(a>1且a≠1).
(1)求函數(shù)f(x)的解析式及其定義域;
(2)判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系中,z軸上到點A(1,0,2)與B(2,-2,1)距離相等的點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人;
(3)從抽出的6名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,1)、B(0,4),點P在直線l:x+y+1=0上移動,求||PA|-|PB||取最大值時,點P的坐標及這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=pan2+q(p,q∈R,n∈N+)則下列命題正確的是
 
(寫出所有正確命題的編號)
①若a2=q,則a1=0;
②存在p,對于任意的q∈R,數(shù)列{an}既是等差數(shù)列又是等比數(shù)列;
③當p=1,q=0且a1=10時,lgan=2n-1
④若p=
1
4
,q=
3
4
且a1為奇數(shù),則數(shù)列{an}的所有項都是奇數(shù);
⑤若p=
1
4
,q=
3
4
,a1>0且an+1>an,則0<a1<1或a1>3.

查看答案和解析>>

同步練習冊答案